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Supplementary Material: Modeling
Commodity Flow in the Context of
Invasive Species Spread: Study of Tuta
absoluta in Nepal

Organization. Here, we will elaborate on the methods used to implement each module,
and provide additional results. Some of the content from the main paper is repeated for
continuity.

1 Flow network construction

1.1 Network construction

Regional markets serve as key locations facilitating agricultural commodity flow, hence it
makes sense to model the flow network with markets represented as nodes. We model
the flow of agricultural produce among markets based on the following premise: the total
outflow from a market is a function of the the amount of produce in its surrounding
regions, and the total inflow is a function of the population to which it caters and the
corresponding per capita income. The main assumptions in this model are as follows. (7)
Imports and exports are not significant enough to influence domestic trade. (iz) Fresh
tomatoes are mainly traded for consumption. This motivates the use of population and
per capita income as indicators of tomato consumption in a given district. (i) The higher
the per capita income, the greater the consumption.

The flows are estimated using a doubly constrained gravity model (Kaluza et al., 2010;
Anderson, 2011). The flow F}; from location ¢ to j is given by

Fij = a;b;0;1; f(di) (1)

where, O; is the total outflow of the commodity from 7, I; is the total inflow to j, d;; is the
distance to travel from 7 to j, f(-) is the distance deterrence function, and coefficients a;
and b; are computed through an iterative process to ensure flow balance.
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Table 1: Datasets.

Description Source Resolution Year

Population Nepal Central Bureau of Statistics (http://cbs.gov.np/) District/Town 2011

Per Capita Income Nepal Central Bureau of Statistics (http://cbs.gov.np/) District 2011

Tomato production Nepal Ministry of Agricultural Development (MOAD) District, Annual 2015
(http://moad.gov.np/)

Production seasonality iDE Nepal (http://idenepal.org/) and MOAD Region, Monthly 2016

Major vegetable markets MOAD Marketing Information System Town 2017
(http://www.agrimis.gov.np/)

Market distances Google Maps, Distance matrix API Market 2017

Tomato import/exports Food and Agriculture Organization (FAOSTAT) Country, Annual 2013
(www.fao.org/faostat/)

Tomato consumption FAOSTAT, MOAD Country, Annual 2013

Flows to Kalimati mar- Official website (kalimatimarket.gov.np/) District, Annual 2015

ket

T. absoluta incidence re- Nepal National Agriculture Research Coun- District/town 2017

ports cil(http://narc.gov.np/), USAID IPM Innovation Lab

and iDE Nepal

Table 2: Notation and abbreviations.

Variables Description
E; Commodity flow from node ¢ to j
O; Total outflow of commodity from node ¢
I; Total inflow of commodity into node ¢

S
.

Distance between nodes ¢ and j

) deterrence function

Power-law exponent of gravity model
Cutoff time of gravity model

Per capita income parameter

Gaussian parameter for spatial seeding
Time step for the spread model

-

+ Q 2 I ™

Seasonality of production Due to altitude and temperature variations, the tomato
production season varies across the regions of Nepal (see Figure ?77). Production in the
Mid Hills and High Hills is largely restricted to the summer months of June to November
(referred to as season S1), while the Terai region produces during the winter months
of December to May (referred to as season S2). As a result, we have two distinct flow
networks, one for each season. We partitioned the districts into two groups: Mid Hills
and High Hills belong to group 1, while the Terai districts belong to group 2. All districts
belonging to group ¢ were assigned their respective annual production for season Si and
zero for the other season.

Market scope definition The nodes of the flow network are the major markets, 69 in
all, after merging markets that belong to the same town. Recall that the amount of
production is specified at the district level. In order to obtain the production estimates
at market level, we defined market scope as follows: The country’s map was overlaid
by a grid cell of size 5km x 5km and we constructed a Voronoi partition of these cells
using market locations as centroids. This was motivated by the fact that tomato sellers
and buyers will seek out the nearest market. We assumed uniform spatial distribution of
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production within each district. Each grid cell was assigned a value of production in a
particular season proportional to the fraction of the area of the district covered by the
cell. The total outflow from the market is the sum of production of the grid cells assigned
to it for a particular season.

Modeling consumption We modeled the total inflow I; into a market as a product of
the population catered to by the market and a function of the average per capita income
associated with the market 7;, n;, where 7 is a tunable parameter. The population catered
to by the market was derived from district level population data and the market scope as
defined for production redistribution.

Inter-market travel time Owing to the diverse landscape of Nepal and varying road
conditions we used travel time by road instead of the geodesic or road distance between the
markets. We geolocated major vegetable markets using Google Maps. We then manually
embedded the market locations onto the Nepal road network, and constructed a planar
network by connecting the markets which have a direct route (without going through other
markets) between them. We also removed markets which were completely inaccessible
by road. We used Google Distance Matrix API! to compute travel times by road along
the edges of this planar network. This in turn yields a road network among the markets,
where the edges are weighted by their travel time. Distance between any two markets is
then obtained as the shortest travel time on the road network. The distance deterrence
function f(d;;) = di_jﬂ exp(—d;j/k) combines power-law and exponential decay with d;;
which can be controlled by the tunable parameters /3, the power-law exponent, and «, the
cutoff time.

1.2 Construction workflow

Recall that nodes of the resulted network are major markets and directed weighted edges
represent the commodity flow from one market to another. Following Kaluza et al.
(2010); Anderson (2011), we used a gravity model to estimate the flows. The flow F};
from location ¢ to j is given by Fj; = a;b;0;1; f(d;;), where O; is the total outflow of the
commodity from i, I; is the total inflow to j, d;; is the distance to travel from 7 to j, f(-)
is the distance deterrence function. The coefficients a; and b; are computed through an
iterative process such that the total outflow and total inflow at each vertex agree with the
input values. The total outflow from each market 7, O; is the amount of produce that arrives
to the market in the specified season. The total inflow is the size of the population catered
to by the market times a function of the per capita income 7;, n”, where v is a tunable
parameter. Here we use a general deterrence function: f(d,;, 5, k) = di_jﬁ exp(—d;;/k),
where d;; is the time taken to travel between markets 7 and j.

Therefore, to construct such a flow network, we need to estimate O; and I; for each
market ¢, as well as pairwise distance d;; between market ¢ and market j. Since the data
of population, per capita income, and tomato production are at the district level (see
Figure 1), whereas the nodes in the resulting network are markets, we need a mechanism

Thttps://developers.google.com /maps/documentation /distance-matrix/
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Figure 1: District-level datasets. (a) Population size. (b) Per capita income.
(¢) Tomato production.

to map the district level data to the individual markets. Following is a step by step
description of the flow network construction pipeline.

Step 1: Partition production data based on seasons. The seasonal tomato production
is shown in Figure 2b. Based on this we partitioned the districts into two groups: Mid
Hills and High Hills belong to group 1, while the Terai districts belong to group 2. All
districts belonging to group ¢ were assigned their respective annual production for season
Si and zero for the other season.

Step2: Estimate tomato consumption. The total tomato consumption of a district is
estimated by the size of its population times a function of the per capita income 7, 17,
where v is a tunable parameter.

Step 3: Map district level data to individual markets. The country’s map was over-
layed by a grid cell of size 25 sq.km. We constructed a Voronoi partition of these cells
using node locations as centroids. We assumed uniform spatial distribution of production
and population for each district. Each grid cell was assigned a value of production in that
season (consumption) which was proportional to the fraction of the area of the district
covered by the cell. Then, we assign each cell to its closest market and the total inflow
(outflow) to the market is the sum of consumption (production) of the grid cells assigned
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to it. See Figure 2a for the assignment of cells to each market.
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Figure 2: Assigning seasonal node attributes. (a) Market scope: Assignment of cells
to individual markets. We have excluded six districts: Humla, Mugu, Dolpa,
Mustang, Manang, and Rasuwa (shown in grey color), since they have low
population/production and are disconnected by the road network. (b) Altitude-
induced production cycle for tomato. We divided the year into two parts,
season S1 (June to November) and season S2 (December to May).

Rangeli Ba:

Step 4: Constructing road network and estimating distances. We first manually
identified pairs of nodes which were directly connected by road (without any other node in
between) and used the Google Distance Matrix API Google (2017) to computed the d;;s
(in minutes). Then we applied Dijkstra’s shortest path algorithm for weighted graphs to
compute pairwise travel time between markets.

Step 5: Estimate gravity model coefficients and calculate flows. The scaling fac-
tors a; and b; are obtained by iteratively solving the system of equations

1
“= >ibiLif(diy)’
poo L
Y aiOif(dy)

Kaluza et al. Kaluza et al. (2010) show that the iterative process converges to fixed values
of a; and b;. There is a tolerance factor which enables faster convergence at the cost of
accuracy of these parameters, and in turn the flow. We set the tolerance factor to 0.01.

2 Dynamic stochastic model for spread

2.1 Spread Dynamics

We develop a discrete-time SI (Susceptible-Infected) epidemic model on directed weighted
networks (Pastor-Satorras et al., 2015) to model pest dispersal. Each node is either
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susceptible (free from pest) or infected (pest is present). Henceforth, we use the term
“infected” for a node or a region frequently to imply 7. absoluta infestation at that location.
A node 7 in state [ infects each of its out-neighbors j in the network with probability

proportional to the flow F}; at each time step ¢. The infection probabilities are obtained
Fy

by normalizing flows globally: \;; = . The model is based on two assumptions:

max; ; Iy
(7) an infected node remains infected and continues to infect its neighbors, and (7) the
chance of infection is directly proportional to the volume traded. Considering the fact
that Nepal was ill-prepared for this invasion and the lack of effective intervention methods,
(7) is a fair assumption. Historically, 7. absoluta has spread rapidly in regions where
tomato trade has been the highest (parts of Europe and Middle-East for example) thus
motivating assumption (7).

Let Ps(i,t, fo) denote the probability that node i remains uninfected (i.e., susceptible)
by time t given the initial condition f; which assigns probability of infection at time
step t = 0 to each node. In general, computing Ps is difficult. Efficient methods have
been proposed to estimate this probability (Lokhov et al., 2014). Here, we adopt the
dynamic message passing algorithm by Lokhov et al. (Lokhov et al.,; 2014), summarized
by the following equations.

P& (t+1) =Ps(i, 0, fo)lgesn 077 (£ + 1)
0" (t 4+ 1) =057 (t) — A" 7 (1) 2
$F() =(1 = M)t — 1)
— [PE7(t) = PE(t - 1))

In the above equations, Ay, is the infection probability across edge (k,i), and 6, ¢ are
intermediate messages used to update the node states. Finally, the quantity of interest
Ps(i,t, fo), the probability that node i remains uninfected (i.e., susceptible) till time ¢ is
given as:

Ps(iyt + 1, fo) = Ps(i,0, fo)lkesit0" 7' (t + 1)

Note that for any given ¢, Ps(i,t, fo) + 7. (fo) = 1, and hence the entire evolution of the

epidemic on the network is captured by Ps(i,t, fo), Vi,t given the initial condition fy.
The initial configuration f; is chosen to mimic a spatially dispersed seeding scenario.

We first select a central seed node, and then use a Gaussian kernel with parameter o

around the seed node to assign initial infection probabilities for neighboring markets. A
2

market at a geodesic distance d from the seed is assigned the infection probability e 307
The kernel accounts for factors such as uncertainty in determining the pest location, the
possibility of spread of the pest through natural means, as well as interactions between
these markets.

The message passing approach for simulating the SI epidemic model is adapted from
Lokhov et al. (2014). The framework uses two cavity messages 6°77(-), ¢*77(-) which are
exchanged across each edge in the network. The initial conditions are set as follows:

0"9(0) = 1
#7(0) = Pr(4,0, fo)
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where P;(i,0, fy) is the initial seeding probability for node i obtained using spatial
seeding given the initial condition fy. The closed set of recursion rules are given by:

Pg(t+1) = Ps(i, 0, fo) ke 0" (t + 1)
Qk%i(t + 1) o ekﬁi(t) — _)\kigbkﬁi(t)
) = (1= M) (1= )" 7't = 1) = [P§T(t) — P§(t — 1)]
In the above equations \y; is the infection probability across edge (k,) and py, is the
recovery probability for node k. For an SI model, nodes remain infected (infested in our
case), and never recover. Thus, u; = 0.

Finally, the quantity of interest Ps(i, t, fo), the probability that node i remains uninfected
(i.e., susceptible) till time ¢ is given as:

Ps(i,t + 1, fo) = Ps(i, 0, fo)llgesit0 7 (t + 1)

Note that for any given t, Ps(i,t, fo) + Pi(i,t, fo) = 1, and hence the entire evolution of
the epidemic on the network is captured by Ps(i,t, fo), Vi,t given the initial condition fo.

3 Monitoring and distribution of T. absoluta

Several organizations are involved in the monitoring of 7. absoluta spread in Nepal. Our
sources are primarily NARC, USAID IPM-IL, ENBAITA, and Agricare Pvt. Ltd. IPM-IL
works through iDE Nepal. On May 3, 2016, T. absoluta was officially reported by NARC’s
entomology division, Khumaltar, Lalitpur. During the first quarter of 2016, farmers
from Kathmandu, Bhaktapur, and Kavre districts reported concern about the new pest
attacking their tomato plants. A team from IPM-IL visited these sites and collected the
moth and larva of the pest. Lures from Pest Control India (PCI) were installed in these
infested fields. Samples of the trapped larva and adults were sent to the School of Life
Science, Arizona State University in June, 2016. Results came positive for T. absoluta.

In a preliminary assessment from May to June, 2016 heavy outbreaks of T. absoluta
were reported from 15 Village Development Committees (VDC) of Kathmandu, 9 VDC
of Bhaktapur, 6 VDC of Lalitpur, and 3 VDC of Kavre district. The pheromone trap
installed in 1 VDC of Dhading, 3 VDC of Kaski, 3 VDC of Banke, 4 VDC of Surkhet, 2
VDC of Jhapa, and 1 VDC of Sunsari district showed no sign of the pest. Since April 25,
2017, more incidence of T. absoluta have been reported from additional districts: Chitwan,
Kaski, Palpa, Syangja, Surkhet, Banke, Saptari, and Kailali.

4 Economic impact

The notations used in this section are given in Table 3. The total economic impact or the
change in social welfare is the sum of change in consumers’ and producers’ surplus. The
change in consumers’ surplus is given by

P>
ACS =— | xP™dp = ——X_pl-n
P 1—n !
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where P, and P, are the old and new price respectively.

To calculate the change in producers’ surplus, we first determine the new supply function
for each district which is the sum of unaffected plus affected supply i.e. 3, 3;P%L;(1 —
%) + 2i(1 = h)Bi(vP)’l;z;.

The new price must satisfy the equilibrium condition i.e.

fxP~ "—ZB,PGZ (1—2z) +Z (1 —h)Bi(vP)’l;z

where the left-hand side is the domestic demand and the right-hand side is the sum of
unaffected supply and the affected supply in the domestic market.
Next we calculate the producers’ surplus from P; to P, for each polygon i as

P P
APS; = / : BiP’Li(1 — z2)dP +/ 2(1 — h)Bi(vP)’liz;2d P
0 0
P P
( / B,Pli(1 — z1)dP + / (1— h)ﬁi(vP)alizi,ldP)
0 0
Bi Bi
= Tyghmel - g A

Bi
+0

Bi
+ (1 bzl = M P = (1 - h)zﬁ’Pl”@)

where z; ;1 and z; 5 correspond to no invasion and invasion scenarios.
To derive the total economic impact, we sum up the changes in consumers’ and producers’

surplus i.e. —li_nPl_”ﬁf +> <1+9l ziog P30 — 146 4 (1+0 2(1=h)' Pyt —

1(1— h)nglHe)). For the actual economic impact, we instantiate the parameters

1+9

1+9
by assuming h = 0.25,v = 0.2, original price P, = 400($/ton), n = —0.7, 6 = 0.5 and
f = 0.94. B; is represented by the Yield of district i (i.e. y;l;) divided by P?. The
parameter values used here have been taken from the literature FAO (2016); Bajracharya
et al. (2016); USDA (2012); of Nepal; Khidr et al. (2013).
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5 Flow validation and sensitivity analysis

Flow validation: The unavailability of sample data on seasonal trade of tomato crop
makes it challenging to calibrate and validate the flow network model. The only data that
is available is the yearly data on the volume of tomato arriving from each district to the
largest wholesale market of Nepal, Kalimati (located in Kathmandu). In Figures 7d-T7f,
we compare this data with the network flows. Given a set of network parameters (3, k, ),
we obtained the inflow from a particular district to Kathmandu as follows: we combined
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the weights of all edges of the corresponding network with destination node “Kathmandu”

and source nodes belonging to that district.

As seen in Figure 7d, for v values between 0.5 and 1, the flows from the networks are
comparable to the Kalimati data except for two districts: Dhading (the top contributor)
and Sarlahi (third highest). Upon further investigation we find that Dhading, which is a
major producer west of Kathmandu, serves the Mid Hills and Terai regions of the Central
Development Region in the flow networks (Figure 7e). While the gravity model predicts
that these flows will be directly delivered to these regions, in reality, it is possible that
Dhading’s produce is routed through Kalimati market as there are several traders from
Dhading registered in the Kalimati market?. As for Sarlahi, even though there is little
inflow to Kalimati market in the flow networks, other markets in the Kathmandu valley
(belonging to Bhaktapur and Lalitpur districts) receive significant flows from Sarlahi
(Figure 7f), which could, as in the previous case, be routed through Kalimati market.
These issues highlight some of the limitations of the gravity model, which do not account
for real-world trader dynamics.
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Figure 7: Sensitivity analysis and flow validation
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