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Abstract—We develop a general data-driven
methodology that yields network representations
of agricultural flows pertaining to the spread
of invasive species. The methodology synthesizes
sparse, diverse, noisy and incomplete data that
is typically available to build realistic spatio-
temporal network representations. We illustrate
the methodology by modeling the seasonal flow
of the tomato crop in Nepal between major do-
mestic markets. Through dynamical analysis of
the network, we study its role in the spread of a
major pest of tomato, Tuta absoluta, an emerging
outbreak in this country. In the absence of high-
resolution pest distribution data, we apply a novel
ranking-based inference approach to establish
that tomato trade is a driving factor in the rapid
spread of this pest.

I. Introduction
Food security is an increasingly important societal

problem. Increased globalization, climate change,
population growth, scarce per capita resources, inter-
national trade, travel and invasive species are impor-
tant factors contributing to the issue of global food
security. In this paper, we will focus on commodity
flows, a quintessential component of our food systems.
Production and consumption of agricultural produce
is no longer a local phenomenon – agro products
travel thousands of miles over global supply chain
networks. While economically attractive in the short
term, global trade increases the risk of rapid spread
of invasive species and bio-terrorism. The situation
is quite similar to spread of infectious diseases in
human and animal populations.
In this paper, we study the seasonal flow of

agricultural commodities, focusing on their role in
the spread of invasive species. The spread of pests

and pathogens is driven by various natural and
anthropogenic factors. An in-depth understanding
of the biology and climatic conditions is essential
to assess establishment risk and devise sustainable
management strategies and has been the focus of
ecologists for a long time. In contrast, not much
is understood as regards to the role of human-
mediated pathways (including trade and travel) in
preventing introduction and mitigating immediate
impact [2, 4, 6, 10]. See [7, 8, 13, 17] for further
discussion on this important subject.

Our contributions: Here we develop an integrated
methodology that combines data science, algorith-
mics, machine learning and ecological modeling that
allow us to address important factors that affect the
human mediated pathways contributing to invasive
species spread. Our key contributions in this paper
are as follows:
(i) We develop an integrated data-driven method-
ology for synthesizing realistic spatio-temporal net-
works of seasonal agro-products between major mar-
kets. The methodology is outlined in Figure 1a.
It combines diverse multi-type, noisy, misaligned
and sparse datasets with detailed context specific
domain knowledge provided by local experts. A
particular challenge we address is data sparsity. The
methodology is generic and can be adapted to a other
agro products and regions.
(ii) We illustrate the methodology by developing a
spatio-temporal domestic tomato trade network in
Nepal and investigate its role in the spread of Tuta
absoluta, a devastating pest of the tomato crop [3]
and an emerging pest in Nepal [1].
(iii) We analyze the spatio-temporal properties of the



flow networks. Further, through dynamical analysis
of the networks and a novel rank-based inference
approach, we assess the role of trade in the spread
of the pest.
(iv) We conduct an in-depth sensitivity analysis to
quantify the role of input parameters. This analysis is
used in validating our synthesized networks; further-
more the analysis provides improved understanding
of the pest dynamics.
Challenges. Agro-trade networks for moving agri-
cultural products is a complex system. The networks
depend on varied factors, including seasonal pro-
duction, population distribution, cultural factors,
economic activity, storage and transport infrastruc-
ture. Furthermore, data needed to develop agro-trade
networks is often sparse, noisy and is not openly
available. For instance, even standard information
such as region-level production is unavailable for
many countries. Even if available, these datasets
vary in format, they are misaligned in reporting
time and vary in spatial and temporal resolution.
Apart from quantitative datasets, there is also need
for qualitative information pertaining to the study
region such as cultural practices, seasonal production
cycles, etc. Interpreting this data and integrating it
into model design requires local knowledge. Similar
challenges exist in obtaining high-resolution pest
distribution data.

Another challenge is validating the network repre-
sentations. While international trade data is available
at the commodity level, domestic data is hard to come
by. Even in data-rich regions such as the US, the
available sample data (e.g. Freight Analysis Frame-
work1) is aggregated at the commodity category level.
Secondly, the role of these networks in the study
of invasive species requires one to understand the
ecological contagion processes. Also, monitoring is
a resource intensive task: the placement of traps is
largely determined by accessibility and availability
of trained personnel. The pest might not be detected
during off season due to host unavailability. In the
absence of monitoring, its presence will become
apparent only during the growing season. But its
reporting might be delayed by farmers due to lack
of awareness or fear of quarantining. Given these
constraints, there may be several months of delay in
reporting.
Related work: In recent years, there has been a
lot of interest in studying the role of international

1https://ops.fhwa.dot.gov/freight/freight_analysis/faf/

trade and travel in invasive species spread. Ercsey-
Ravasz et al. [8] analyze the International Agro-Food
Trade Network to identify countries of importance
in the context of food safety. Early et al. [7] study
the terrestrial threat from invasive species and
evaluate national capacities to prevent and manage
invasions. Tatem [17] showed that the world-wide
airline network increases the risks of establishment
by providing busy transport links between spatially
distant, but climatically similar regions of the world.

There has been some work on domestic commodity
flow and its role in pest spread. Nopsa et al. [13]
evaluated the structure of rail networks in the US
and Australia for pest and mycotoxin dispersal.
Colunga-Garcia et al. [5] use the regional freight
transport information to characterize risk of urban
and periurban areas to exotic forest insect pests in
the US. In [15] provides a survey of recent modeling
efforts.
T. absoluta. There is general consensus that veg-
etable and seedling trade is a primary driver of T. ab-
soluta spread [3]. However, previous modeling efforts
have only focused on establishment potential [18]
and spatial dispersion [9]. This is the first work that
analyzes human-mediated pathways in the context of
T. absoluta. Nepal’s vegetable production and trade
has been extensively studied from a socio-economic
perspective ([19] for example), but, to the best of
our knowledge, there is no such work in the context
of invasive species spread with focus on this region.

II. Modeling Framework
Figure 1a outlines the different components that

constitute the framework. As we describe each com-
ponent, we will also discuss the associated data chal-
lenges and key modeling assumptions that allowed
us to integrate them. The symbols and abbreviations
used henceforth are summarized in Table II.

A. Data
Table I lists the datasets used in our framework.

We link several open-source datasets along with
qualitative inputs from local experts in order to
model the seasonal trade of tomato crop as well as
pest dynamics. Some of the challenges arise from
the fact that the datasets vary in their spatial
and temporal resolution and their year of release
(see Table I). Owing to the unique geography of
Nepal, the vegetable production cycle varies with
altitude (see Figure 1c). The annual production data
was combined with the knowledge of production
cycle to model the spatio-temporal variation in

2



Market 
locations

Tomato 
production Population

Market scope
(Voronoi
regions)

Google 
Distance Matrix API

Market nodes
with attributes

Production 
seasonality

Gravity 
modelPairwise distances/

travel time

Market network

Seasonal
�ow network

Projected
�ow network

Structural 
analyses

Dynamic message passing
(SI model)

Retrospective
inference &
Forecasting

Network
Construction

Spread 
Dynamics

Analyses/Validation

Income per
capita Tuta incidence

Datasets

(a) Modeling framework

Kathmandu

East-West Highway

(b) Market network (c) Production seasonality

Bhaktapur

Dhading
Kathmandu

KavrepalanchokLalitpur

Nuwakot

Rasuwa

Sindhupalchok

Dhanusa

Dolakha

Mahottari

Ramechhap

Sarlahi

Sindhuli

Bara

Chitawan
Makwanpur

Parsa

Rautahat

Bhojpur

Dhankuta

Morang

Sankhuwasabha

Sunsari

Terhathum

Ilam

Jhapa

Panchthar

Taplejung

Khotang

Okhaldhunga

Saptari
Siraha

Solukhumbu

Udayapur

Baitadi

Dadeldhura

Darchula

Kanchanpur

Achham

Bajhang

Bajura

Doti

Kailali

Banke

Bardiya

Dailekh
Jajarkot

Surkhet

Dolpa

Humla

Jumla
Kalikot

Mugu

Dang

Pyuthan

Rolpa

Rukum

Salyan Baglung

Mustang

Myagdi

Parbat Gorkha
Kaski

Lamjung

Manang

Syangja
TanahuArghakhanchi

Gulmi

Kapilbastu
Nawalparasi

Palpa

Rupandehi

Tuta incidence timing
Before Jun 2016
Jun-Dec 2016
After Dec 2016

(d) T. absoluta incidence timings

Figure 1: Modeling framework and some datasets

production across seasons. Major vegetable markets
were geolocated using Google Maps, and Google
Distance Matrix API was used to construct the
road network and compute travel times. Several
organizations have been involved in the monitoring
of T. absoluta spread in Nepal: NARC, USAID, iDE
Nepal, ENBAITA and Agricare Pvt. Ltd. The pest
is monitored using pheromone traps that have been
installed in several Village Development Committees.
In May 2016, T. absoluta was officially reported
by NARC’s entomology division in Lalitpur (near
Kathmandu).

B. Network construction
Regional markets serve as key locations facilitating

agricultural commodity flow, hence it makes sense
to model the flow network with markets represented
as nodes. We model the flow of agricultural produce
among markets based on the following premise: The
total outflow from a market depends on the amount
of produce in its surrounding regions, and the total
inflow is a function of the population it caters
to and the corresponding per capita income. The
main assumptions in this model are: (i) imports
and exports are not significant enough to influence
domestic trade: For instance, in 2014, Nepal exported
only 1% of its tomatoes and imported about 6-7% of
its total consumption (http://www.fao.org/faostat);
(ii) Fresh tomatoes are mainly traded for consump-

tion: The tomato processing industry in Nepal is
not well developed [19]. This motivates the use of
population and per capita income as indicators of
tomato consumption in a given district. and (iii) the
higher the per capita income, the greater the con-
sumption: Tomato is among the top two vegetables
which provide highest profit to farmers (expensive
for a typical consumer), and unlike cauliflower and
cabbage, tomato is not considered a staple vegetable
in the Nepalese household [19].

The flows are estimated using a doubly constrained
gravity model [11]. The flow Fij from location i to j
is given by

Fij = aibjOiIjf(dij) (1)

where, Oi is the total outflow of the commodity
from i, Ij is the total inflow to j, dij is the time taken
to travel from i to j, f(·) is the distance deterrence
function, and coefficients ai and bj are computed
through an iterative process to ensure flow balance.
However, as seen in Table I, data pertaining to

these quantities are available at different spatial and
temporal resolutions. Thus, before we apply (1), we
need to synthesize these datasets to capture the
seasonal commodity flow at the level of markets.
The steps involved are described as follows:

Seasonality of production: Based on the phys-
iography, districts of Nepal are partitioned into three
regions, namely Terai, Mid Hills and High Hills
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Table I: Datasets.

Description Source Resolution Year

Population Nepal Central Bureau of Statistics (http://cbs.gov.np/) District/Town 2011
Per Capita Income Nepal Central Bureau of Statistics (http://cbs.gov.np/) District 2011
Tomato production Nepal Ministry of Agricultural Development (MOAD) (http://moad.gov.np/) District, Annual 2015
Production seasonality iDE Nepal (http://idenepal.org/) and MOAD Region, Monthly 2016
Major vegetable markets MOAD Marketing Information System (http://www.agrimis.gov.np/) Town 2017
Market distances Google Maps, Distance matrix API Market 2017
Tomato import/exports Food and Agriculture Organization (FAOSTAT) (www.fao.org/faostat/) Country, Annual 2013
Tomato consumption FAOSTAT, MOAD Country, Annual 2013
Flows to Kalimati market Official website (kalimatimarket.gov.np/) District, Annual 2015
T. absoluta incidence reports Nepal National Agriculture Research Council(http://narc.gov.np/)

USAID IPM Innovation Lab, iDE Nepal
District/town 2017

Table II: Notation and abbreviations.

Variables Description

Fij Commodity flow from node i to j
Oi Total outflow of commodity from node i
Ii Total inflow of commodity into node i
dij Distance between nodes i and j
f(.) deterrence function
β Power-law exponent of gravity model
κ Cutoff time of gravity model
γ Per capita income parameter
σ Gaussian parameter for spatial seeding
t Time step for the spread model

(see Figure 3e) Due to altitude and temperature
variations, the tomato production season varies
among these regions (see Figure 1c). Production in
the Mid Hills and High Hills is largely restricted to
the summer months of June to November (referred
to as season S1), while Terai region produces during
the winter months of December to May (referred
to as season S2). As a result, we have two distinct
flow networks, one for each season. We partitioned
the districts into two groups: Mid Hills and High
Hills belong to group 1, while the Terai districts
belong to group 2. All districts belonging to group i
were assigned their respective annual production for
season Si and zero for the other season.

Market scope definition: The nodes of the flow
network are the major markets, 69 in all, after
merging markets that belong to the same town.
Recall that the amount of production is specified at
the district level. In order to obtain the production
estimates at market level, we defined market scope
as follows: The country’s map was overlaid by a
grid cell of size 5km × 5km and we constructed a
Voronoi partition of these cells using market locations
as centroids. This is under the assumption that
tomato sellers and buyers will seek out the nearest
market. We assumed uniform spatial distribution
of production within each district. Each grid cell
was assigned a value of production in a particular
season proportional to the fraction of the area of the

district covered by the cell. The total outflow from
the market is the sum of production of the grid cells
assigned to it for a particular season.

Modeling consumption: We modeled the total
inflow Ii into a market as a product of the popu-
lation catered to by the market and a function of
the average per capita income associated with the
market ηi, ηγi , where γ is a tunable parameter. The
population catered to by the market, was derived
from district level population data and the market
scope as defined for production redistribution.

Inter-market travel time: Owing to the diverse
landscape of Nepal and varying road conditions we
used travel time by road instead of the geodesic or
road distance between the markets. We begin with
list of major vegetable markets in Nepal (see Table I),
and geolocate them using Google Maps. We then
manually embedded the market locations onto Nepal
road network, and constructed a planar network by
connecting the markets which have a direct route
(without going through other markets) between them.
We also removed markets which were completely
inaccessible by road. We used Google Distance
Matrix API2 to compute travel times by road along
the edges of this planar network. This in turn, yields a
road network among the markets, where the edges are
weighted by their travel time. Distance between any
two markets is then obtained as the shortest travel
time on the road network. The distance deterrence
function f(dij) = d−βij exp(−dij/κ) combines power-
law and exponential decay with dij which can be
controlled by the tunable parameters β, the power-
law exponent, and κ, the cutoff time.

C. Spread Dynamics
We develop a discrete-time SI (Susceptible-

Infected) epidemic model on directed weighted net-
works [14] to model pest dispersal. Each node is

2https://developers.google.com/maps/documentation/distance-
matrix/
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either susceptible (free from pest) or infected (pest is
present). Henceforth, we use the term “infected” for
a node or a region frequently to imply T. absoluta
infestation at that location. A node i in state I
infects each of its out-neighbors j in the network
with probability proportional to the flow Fij at each
time step t. The infection probabilities are obtained
by normalizing flows globally: λij = Fij

maxi,j Fij . The
model is based on two assumptions: (i) an infected
node remains infected and continues to infect its
neighbors and (ii) the chance of infection is directly
proportional to the volume traded. Considering the
fact that Nepal was ill-prepared for this invasion and
the lack of effective intervention methods, (i) is a
fair assumption. Historically, T. absoluta has spread
rapidly in regions where tomato trade has been
the highest (parts of Europe and Middle-East for
example) thus motivating assumption (ii).

Let PS(i, t, f0) denote the probability that node i
remains uninfected (i.e., susceptible) by time t given
the initial condition f0 which assigns probability
of infection at time step t = 0 to each node. In
general, computing PS is hard. Efficient methods
have been proposed to estimate this probability. Here,
we adopt the dynamic message passing algorithm
by Lokhov et al. [12], summarized by the following
equations.

P i→jS (t+ 1) =PS(i, 0, f0)Πk∈δi\jθ
k→i(t+ 1)

θk→i(t+ 1) =θk→i(t)− λkiφk→i(t) (2)
φk→i(t) =(1− λki)φk→i(t− 1)

− [P k→iS (t)− P k→iS (t− 1)]

In the above equations, λki is the infection probability
across edge (k, i), and θ, φ are intermediate messages
used to update the node states. Finally, the quantity
of interest PS(i, t, f0), the probability that node i
remains uninfected (i.e., susceptible) till time t is
given as:

PS(i, t+ 1, f0) = PS(i, 0, f0)Πk∈δiθ
k→i(t+ 1)

Note that for any given t, PS(i, t, f0)+PI(i, t, f0) = 1,
and hence the entire evolution of the epidemic on
the network is captured by PS(i, t, f0),∀i, t given the
initial condition f0.
The initial configuration f0 is chosen to mimic a

spatially dispersed seeding scenario. We first select
a central seed node, and then use a Gaussian kernel
with parameter σ around the seed node to assign
initial infection probabilities for neighboring markets.
A market at a geodesic distance d from the seed,

is assigned the infection probability e−
d2

2σ2 . The
kernel accounts for factors such as uncertainty in
determining the pest location, the possibility of
spread of the pest through natural means as well
as interactions between these markets.

III. Analyses and Results
Flow validation: The unavailability of sample data
on seasonal trade of tomato crop makes it challenging
to calibrate and validate the flow network model. In
fact, to the best of our knowledge, even information
on annual flow of vegetables between markets is
not available. However, for the largest wholesale
market of Nepal, Kalimati (located in Kathmandu),
yearly data on volume of tomato arriving from each
district is available (Table I). In Figures 2d–2f, we
compare this data with the network flows. Given
a set of network parameters (β, κ, γ), we obtained
the inflow from a particular district to Kathmandu
as follows: We combined the weights of all edges
of the corresponding network with destination node
“Kathmandu” and source nodes belonging to that
district.
As seen in Figure 2d, for γ values between 0.5

and 1, the flows from the networks are comparable to
the Kalimati data except for two districts: Dhading
(the top contributor) and Sarlahi (third highest).
Upon further investigation we find that Dhading,
which is a major producer west of Kathmandu,
serves the Mid Hills and Terai regions of the Central
Development Region in the flow networks (Figure 2e).
While the gravity model predicts that these flows will
be directly delivered to these regions, in reality, it is
possible that Dhading’s produce is routed through
Kalimati market as there are several traders from
Dhading registered in the Kalimati market3. As
for Sarlahi, even though there is little inflow to
Kalimati market in the flow networks, other markets
in the Kathmandu valley (belonging to Bhaktapur
and Lalitpur districts) receive significant flows from
Sarlahi (Figure 2f), which could, as in the previous
case be routed through Kalimati market. These issues
highlight some of the limitations of the gravity model,
which do not account for real-world trader dynamics.
A. Structural properties

For each set of network parameters (β, κ, γ), there
are two networks, one for each season. Both networks
have 69 nodes. The cumulative distribution of flows
with respect to travel time are plotted in Figures 2a–
2c for different values of network parameters for

3http://mrsmp.gov.np/files/download/tomato%20book.pdf

5



0 500 1000 1500 2000
Travel time t (in minutes)

20000

40000

60000

80000

100000

120000

140000
S

um
 o

f f
lo

w
s:

 i,j
:d

i,j
<

tF i
,j

= 500.0, = 1.0, Season S1

= 0
= 1
= 2
= 3

(a) Sensitivity to β

0 500 1000 1500 2000
Travel time t (in minutes)

80000

100000

120000

140000

S
um

 o
f f

lo
w

s:
 i,j

:d
i,j

<
tF i

,j

= 2, = 1.0, Season S1

= 100
= 500
= 1000

(b) Sensitivity to κ

0 1000 2000 3000 4000 5000 6000 7000 8000
Flow F in tonnes

10
0

10
1

10
2

10
3

# 
of

 e
dg

es
 w

ith
 F

i,j
>

F

= 2, = 500, Season S1
= 0
= 0.5
= 1

(c) Sensitivity to γ

0

1000

2000

3000

4000

5000

6000

7000

8000

Dhad
ing

Kavr
epa

lan
cho

k
Sar

lah
i

Kath
mand

u
Chitw

an

Raut
aha

t
Jha

paBara
Lalit

pur

Bhak
tap

ur

Makw
anp

ur

Nuwako
t

Mora
ng

Parsa

in
flo

w
(m

et
ri
c
to
nn

es
)

Kathmandu inflows
(2,500,0)

(2,500,0.5)
(2,500,1)

Kalimati 2014

(d)

0

500

1000

1500

2000

2500

3000

3500

FWDR
MWDR

WDR
CDR

EDR

ou
tfl
ow

(m
et
ri
c
to
nn

es
)

Dhading outflows
Terai

Mid Hills
High Hills

(e)

0

1000

2000

3000

4000

5000

6000

FWDR
MWDR

WDR
CDR

EDR

ou
tfl
ow

(m
et
ri
c
to
nn

es
)

Sarlahi outflows
Terai

Mid Hills
High Hills

(f)

Figure 2: Sensitivity analysis and flow validation

season S1 (the network corresponding to season S2
have similar properties). Except for β = 1, the flow
plateaus for t > 500 minutes, which corresponds
to ≈ 8 hours of travel time.
For further analysis of the flow network we de-

scribe the different regions within Nepal. Nepal has
significant altitude variations along the North-South
axis, and is divided into three major physiographic
regions namely: Terai, Mid-hills and High hills (Fig-
ure 3e). For administrative reasons, Nepal has been
divided along the East-West axis (Figure 3a) into
five major development regions. Kathmandu, for in-
stance, belongs to Mid-hills and Central Development
Region. It is useful to remember that the Central
Development Region is by far the most economically
prosperous, while the population density is high along
the Terai region and Kathmandu valley (Table I).

The general trends of tomato trade between mar-
kets is depicted in Figure 3 (generated for β = 2,
κ = 500 and γ = 1.0). We recall that our model
accounts for the fact that the Hills/Mid Hills and
the Terai are the primary sources of tomato during
seasons S1 and S2 respectively. This is clearly re-
flected in the net flow diagram between geographic
regions: north (Hills/Mid Hills) to south (Terai) in
S1 and south to north in S2. However, an interesting
pattern to be noted is the significant flow from east
to west during S1 as observed in the net flow diagram
between the Development Regions. These could be

due to the variability in vegetable production, and
the presence of an arterial East-West highway that
almost covers the entire breadth of the country.

Comparison with the annual flow network: To
evaluate the importance of seasons, we constructed
the annual flow network by using the gravity model
with annual production for each district. The result-
ing flows are shown in Figures 3d and 3h. Compared
to the seasonal flows we see that annual flows are
of shorter distance and thus there is not much flow
between regions (either between east and west or
south and north).

Sensitivity analysis of the flow network: Fig-
ures 2a–2c show the sensitivity of edge weight
distribution of season S1 network to β, κ and γ.
We find that for β ≥ 2 and κ ≥ 500 the weight
distribution is relatively stable. A similar behavior
was observed for the season S2 flow network with
respect to β and κ. Increasing γ tends to redistribute
flows towards high income regions (in this case,
regions around Kathmandu in the Mid Hills, Central
Development Region, see Figure 3a), and leads to
higher maximum flows in the network in season S1,
and lower maximum flows in season S2 (not shown
here). However, changing γ had minimal effect on
most of the low weight edges in the network.
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Figure 3: The spatio-temporal structure of the flow network. The first row shows the flow from east
to west between development regions of Nepal. The second row depicts the flow from north to south between
regions of different altitudes. While the second and third columns correspond to seasonal flow, the last column
corresponds to the flows generated from annual data.

B. Role of trade network in pest spread

We applied the network diffusion model described
in Section II-C to study the role of the flow networks
in the spread of T. absoluta in Nepal. To interpret
the spread model’s output, in terms of incidence
reports, we need to translate t of the SI model to
a real-world equivalent temporal unit (e.g., month).
Validating this requires pest reports at a high spatio-
temporal resolution. Since this is absent in the case
of T. absoluta, to circumvent this problem, we make
use of SI model’s monotonic property: For any t′ > t,
PS(i, t′, f0) ≤ PS(s, t, f0), and thus the ranking of
relative vulnerabilities of market nodes could inform
how the process unfolds. We also observed that the
rank list is stable (or changes slowly) with respect
to t with other parameters fixed (see Table III).
The experiment was setup under the following

premise: T. absoluta was first introduced to the
Kathmandu valley. Ground experts have high con-
fidence in this assumption since the pest was not
discovered in the previous growing season in other
parts of Nepal. Given the pest reports till December
2016 (Figure 1d), we evaluate our model based on

the following backward inference problem: for an
observation of node states at time t, what is the
most likely origin of invasion? (also known as the
source detection problem [16]). We examine the
likelihood of markets or regions being the source
nodes, and in particular, we compare this with the
likelihood of the region around Kathmandu being the
source (see Figure 4). Suppose O is the observation
criteria; it consists of pairs (v,X) where v is a node
and X ∈ {S, I} is a state. For each candidate initial
condition f0, we estimate the joint probability of O at
a time step t, as a product of the marginal probability
estimates from the message passing algorithm and
define an energy function for each tuple (f0, t) as

φ(O|f0, t) = − log
( ∏

(v,X)∈O

PX(i, t, f0)
)
.

The lower the value of φ, the higher the likelihood
of f0 being the initial condition. Secondly, recalling
the uncertainty in interpreting time step t, we
examined the relative likelihoods of each f0 and
the stability of the ranking across a range of model
parameters.
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We consider the spread during June-November
(season S1) for model evaluation. Using the S1 flow
network, our objective was to rank various starting
configurations f0 based on φ(O|f0, t) given O, t. For
a given σ, we evaluated the likelihood of each node
being the central node. We considered two criteria
based on which the likelihood of each f0 as the
starting configuration was computed: (i) OG: this is
the set of all pairs (v, I) where v is a market node
that belongs to a district that reported pest presence
by December 2016. (ii) OB: this is the set of (v, I)
for all nodes v. This is the baseline which assumes
no observational data.

The results are shown in Figure 4. Firstly, we ob-
served that for both criteria OG and OB, the top few
ranks are relatively robust to varying network and
model parameters. Also, for both criteria, markets
from the Central Development Region (CDR) that
belong to Kathmandu and its adjacent districts are
among the top ranked nodes. Interestingly, for the
criterion OG, Dhankuta (EDR), with the highest
assigned production has a very low rank (Figure 4a)
and a low φ value compared to the top market in OG.
However, for OB, it is ranked second (Figure 4b).
This clearly shows that while Dhankuta has the
potential to infect a large number of areas, given what
has been observed, it is very unlikely that it was the
source of infection. Dhankuta reported presence of
the pest only towards the end of 2016 (see Figure 1d).

Spread in season S2: To study the spread from
November 2016 to May 2017, we considered the
dynamics on season S2 network. To set the initial
conditions, we used the results of our inference study,
and chose Kathmandu with σ = 10 as the seed
distribution. For this initial condition, we obtained
the probability of infection for all nodes in S1 for
T1 time steps. This distribution is used as initial
condition for the S2 network spread. Figure 4c
shows the infection probabilities for a particular
combination of (T1, T2). As seen in Figure 4c, our
model suggests that most Terai and Mid Hills regions
of CDR, WDR would be affected by the end of
May 2017, and subsequent seasons are only going
to see increasing incidence of the pest throughout
the country. From Figure 1d, we see that regions
belonging to Terai in CDR and Mid Hills of WDR
and MWDR have already reported pest presence
(marked in Figure 4c).

While the intended usage of the origin inference
formulation is to determine the source of infection,

we have adapted it to compare expected spread in the
model with observed data. Our results demonstrate
that this framework is in general very useful in finding
the likely pathways of introduction of the pest.
Sensitivity analyses: A full factorial design was
performed with levels for the parameters of interest as
given in Table III, and analysis of variance (ANOVA)
was used to evaluate single parameter effect. It is
worth noting that assessment of parameter sensitivity
depends on the choice of quantity of interest. Since
the outcome of origin inference is a ranking on
markets, we used Spearman’s rho to test its stability
across the parameter space. The experiment was set
up within the GENEUS framework [20], a general
computational environment for experimental design,
uncertainty quantification and sensitivity analysis.
We studied the sensitivity of individual market

ranks as well as rank lists to network parame-
ters (β, κ, γ), and diffusion model parameters (σ, t).
We found that the market ranks are more sensitive to
spatial seeding parameter σ and distance exponent β
than other parameters. In particular, we observed
that the sensitivity was highest when σ = 0 was
included in the analysis. In this case (and in general
for very low values of σ), substantial spread occurs
only when the seed node is a source. Even if a
node is in close proximity to several sources (such
as Kathmandu), there is hardly any spread. This
is unrealistic in the context of pest and pathogen
dispersal. Hence, we restricted σ to be greater than 0
in our analysis. Also, we observe that the variance
in rank is small for higher ranked nodes. This can
be seen in Figure 4, and is more pronounced in the
single parameter analyses. This property gives higher
confidence in interpreting the results on top markets.
We used Spearman’s rank correlation coefficient

to analyze the rank stability. Here we use the rank
list that results from configuration (β = 2, κ =
500, γ = 0, σ = 5, T = 10) as the reference and
calculate the Spearman’s rho value with respect to
it for rank lists induced by other parameter settings.
Table III gives the Analysis of Variance (ANOVA)
results. Under 95% confidence level, p-value < 0.05
means that the particular parameter has a significant
effect. Therefore, we see that β and σ have significant
effects, while others do not. Here, we note that this
is despite not considering σ = 0 in the analysis.

IV. Conclusion and future work
We have described a first-principles based com-

modity modeling framework that integrates easily
available datasets on population, production, etc.
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Figure 4: Evaluating the spread model using epidemic source inference framework. (a) The average
rank of each market based on the likelihood for the criterion OG for a range of model parameters (see
Table III). (b) Same as (a), but for criterion OB. (c) Spread in S2: The parameters used were β = 2, κ = 500,
σ = 15, γ = 1, T1 = T2 = 10 with Kathmandu as the seed node. The blue dots correspond to markets whose
districts reported T. absoluta presence before December 2016 (season S1), while the red dots correspond to
markets which reported later.

Parm. Levels t-ratio F-value p-value
β [0, 1, 2] -5.16 26.6059 < 0.0001
σ [5, 10, 15, 20] -3.29 10.8424 < 0.0001
κ [100, 500, 1000] -0.42 0.1758 0.6753
γ [0, 0.5, 1.0] 0.89 0.7970 0.3727
T [5, 10, 20] 1.14 1.2976 0.2556

Table III: Analyzing sensitivity to model pa-
rameters using ANOVA.

to model the flow of agricultural produce. We have
demonstrated the validity of the constructed net-
works, and have used it to understand the impact of
commodity flow on pest spread. Despite being limited
by the availability of quality validation datasets, a
bare bones framework such as ours can be quickly
extended to other vegetables, pests and regions with
minimal effort. Our approach provides a modular
framework for integration of other models that can
be refined with increased availability of data and
sophisticated methods.
Since our study is one of the first to consider

regional commodity flow analysis in the context
of pest spread, especially T. absoluta, there are

several avenues for improvement. While some of the
limitations arise from lack of refined data, others are
due to the limited understanding of the underlying
complexity of pest invasions. The former may be
the norm for emerging contagions in a data-poor
region, whereas the latter will need several iterations
of model development and validation by the scientific
community. Our model predominantly focuses on
commodity flow, and does not explicitly account for
natural or other modes of spread (infected seedlings
from nurseries for example). A more comprehensive
model will need to integrate ecological suitability and
biology directly in the diffusion process.
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