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Abstract. The k-core is commonly used as a measure of importance
and well connectedness for nodes in diverse applications in social net-
works and bioinformatics. Since network data is commonly noisy and
incomplete, a fundamental issue is to understand how robust the core
decomposition is to noise. Further, in many settings, such as online so-
cial media networks, usually only a sample of the network is available.
Therefore, a related question is: How robust is the top core set under
such sampling?
We find that, in general, the top core is quite sensitive to both noise
and sampling; we quantify this in terms of the Jaccard similarity of
the set of top core nodes between the original and perturbed/sampled
graphs. Most importantly, we find that the overlap with the top core
set varies non-monotonically with the extent of perturbations/sampling.
We explain some of these empirical observations by rigorous analysis in
simple network models. Our work has important implications for the use
of the core decomposition and nodes in the top cores in network analysis
applications, and suggests the need for a more careful characterization
of the missing data and sensitivity to it.

1 Introduction

The k-core Ck(G) of an undirected graph G = (V,E) is defined as the maximal
subgraph in which each node has degree at least k; the core number of a node is
the largest k such that it belongs to the k-core (i.e., v ∈ Ck(G)). The set Sk(G) =
Ck(G)\Ck+1(G), consisting of nodes with core-number k, is referred to as the k-
shell; the core decomposition (i.e., the partitioning into shells) can be computed
efficiently and combines local as well as global aspects of the network structure.
This makes it a very popular measure (along with other graph properties, e.g.,
degree distribution and clustering coefficient) in a wide variety of applications,
such as: the autonomous system level graph of the Internet [6,3], bioinformatics
[19,28], social networks and epidemiology [21,18]; some of the key properties that
have been identified include: the well-connectedness of the nodes with high core
number and their significance in controlling cascades.

In most applications however, the networks are inferred by indirect measure-
ments, e.g.: (i) the Internet router/AS level graphs constructed using traceroutes,
e.g., [12], (ii) biological networks, which are inferred by experimental correlations,
e.g., [19,28], (iii) networks based on Twitter data (related to which there is a



growing body of research, e.g., [18,4,16]), in which a limited 1% sample can be
constructed by the APIs.3 Therefore, networks studied in these applications are
inherently noisy and incomplete; this raises a fundamental issue in the use of
any graph property P(G) for graph G: How does the property, and conclusions
based on it get affected by the uncertainty in G? Is there a smooth transition
in the property with the uncertainty,4 and is it possible to quantify the error in
the observed measurement? An example of such an issue is the nature of degree
distributions of the Internet router graph and its vulnerability: several papers,
e.g., [12] observed that these are power laws. Achlioptas et al. [1] showed that
there are significant sampling biases in the way traceroutes (which are used to
infer the network) work; for a broad class of networks, they prove that such
inference methods might incorrectly infer a power-law distribution (even when
the underlying network is not).

Our work is motivated by these considerations of the sensitivity to noise
and the adequacy of sampling. Specifically, we study how results about the core
decomposition and top cores in the network, e.g., [6,3,19,28,21,18], are affected
by the uncertainty, noise and small samples (as in the case of online social
media networks). Such questions have been studied in the statistical physics
literature, e.g., [10], who show that there is a threshold probability for random
node deletions in infinite networks, above which the k-core disappears; it is not
clear how relevant such results are to real world networks, which are finite and
do not satisfy the symmetries needed in such results. Hamelin et al. [3] report
robustness of their observations related to the shell structure in the Internet
router graph, for specific sampling biases related to traceroute methods. We are
not aware of any other empirical or analytical work on the sensitivity of the core
decomposition.

Since there is very limited understanding of how noise should be modeled, we
consider three different stochastic edge perturbation models, which are specified
by how a pair u, v of nodes is picked: (i) uniformly at random (ERP, for Erdős-
Rényi perturbations), (ii) in a biased manner, e.g., based on the degrees of u, v
(CLP, for Chung-Lu or degree assortative perturbations), and (iii) by running
a missing link prediction algorithm, such as [8] (LPP, for link prediction based
perturbations); see Section 3 for complete definitions. We also study a model of
stochastic node deletions. Let α denote the fraction of nodes/edges perturbed;
typically we are interested in “small” α.

A complementary aspect (particularly relevant in the context of sampled
data from social media such as Twitter) is the effect of sampling. We consider
edge/node sampling with probability p (i.e., corresponding to deletion with prob-
ability 1 − p). We study the following question: can the properties of the core
structure be identified by small edge/node samples, i.e., corresponding to small
p? In our discussion below, we use G′ to denote the graph resulting from per-

3 Larger samples, e.g., 10% can be obtained form Twitter’s commercial partners for a
large fee.

4 As observed in the case of centrality measures by [5], who claim that there is a
gradual decrease in the accuracy of the centrality scores.



turbation/sampling of a starting graph G. Let kmax(G) denote the maximum
core number in G. We study the Jaccard similarity, ηj(G,G

′), between the set
of nodes in the top j-cores in G and G′; we sometimes informally refer to ηj as
the “similarity” between the top cores. Our main results are summarized below.

1. Sensitivity to Noise. We consider perturbations with α ranging from less
than 1% to 10%. We find that ηj and the shell structure shows high sensitivity
to edge/node perturbations; however, the precise effects are very network and
noise model specific. Further, η1 is quite sensitive in the CLP model for many
networks: perturbation with α < 5% can alter η1 by more than 20% in some
networks. More importantly, we find that in a large fraction of the networks,
ηj exhibits a non-monotone behavior as a function of α. This can be a seri-
ous issue in some applications where the core structure is used, and needs to
be examined critically. The sensitivity decreases as we increase j, but ηj varies
non-monotonically with j as well. In contrast, the top cores seem quite stable
to perturbations in the ERP model, which primarily affects the shell size distri-
bution in some networks. The LPP model seems to affect both the low and high
cores. Further, node perturbations (modeled as random deletions) seem to have
a much higher impact than edge perturbations, in general. It is intriguing that
co-authorship and citation networks seem to be generally much more stable com-
pared to influence and infrastructure networks. Further, we observe that sudden
changes in the similarity index are almost always accompanied with increase in
kmax.

This motivates the CorePerturbation problem: given a graph G and a pa-
rameter k, what is the probability that a k-core forms in G after perturbation, if
it did not have a k-core initially. We prove that this problem is #P-hard, which
suggests rigorous quantification of the variation in the top core even in such
simple stochastic noise models is quite challenging. We attempt to further un-
derstand and explain the empirical observations analytically using simple math-
ematical models. We also prove that under some weak assumptions that usually
hold in social networks, the low core numbers can be altered quite significantly
in the ERP model.

2. Sensitivity to Sampling. We find most networks exhibit a high level of sen-
sitivity to sampling, and ηj is a noisy and non-monotone function of p, especially
when p is close to 1; there is higher level of sensitivity to node sampling than
to edge sampling. For most of the networks we study, identifying a reasonably
large fraction (say 80%) of the top core set requires a fairly high sampling rate
p: higher than 0.6 in most networks, and as high as 0.8 in some. Specifically, in
the case of a Twitter “mentions” graph (see Section 3.2 for details), we find that
this entails a much higher level of sampling than what is supported by the public
API. Further, biased sampling based on edge weights can improve the similarity
index slightly. We analyze the effects of sampling to help explain some of these
results. We show that the maximum core number in Gp scales with the sampling
probability, and that non-monotonicity under sampling is an inherent aspect of
the Erdős-Rényi model. We also find that the top core can be very fragile, and
can change completely even for very low sampling rate.



Organization. We briefly discuss the related work in Section 2. We introduce
the main definitions, and summarize our data sets in Section 3. We discuss the
sensitivity to noise and the effects of sampling in Sections 4 and 6, respectively.
In Section 5, we discuss the CorePerturbation problem, and conclude in
Section 7. Because of limited space, we present many of the details in the full
version [2].

2 Related Work

Noise and sampling biases in networks are well recognized as fundamental is-
sues in applications of complex networks, and many different models have been
studied for it. A common approach in social networks, e.g., [9,5], is to examine
stochastic node and edge deletions. There is a large body of work on predict-
ing missing links in complex networks (based on expected clustering and other
structural properties), e.g., [8], which could also be used as a possible candidate
set. Since there is no clear understanding of noise/perturbations, we study three
different models from the literature in this paper.

We briefly discuss a few of the results on understanding the impact of uncer-
tainty on network properties. The impact of sampling bias on the properties of
the Internet router graph [1] was already mentioned earlier. There has also been
a lot of work in understanding the sensitivity of centrality to noise, e.g., [9,5]; it
has been found that the impact on the centrality is variable and network depen-
dent, but the general finding in [5] is that the accuracy of centrality measures
varies smoothly and predictably with the noise. Morstatter et al. [23] study the
effects of limited sampling in social media data by analyzing the differences in
statistical measures, such as hashtag frequencies, and network measures, such as
centrality.

The work by Flaxman and Frieze [14,15] is among the very few rigorous
results on the impact of perturbations on network parameters— they rigorously
analyze the impact of ERP on the diameter and expansion of the graph. The
issue of noise has motivated a number of sampling based algorithmic techniques
which are “robust” to uncertainty, in the form of “property testing” algorithms,
e.g., [27] and “smoothed analysis”, e.g., [29].

Finally, we briefly discuss some of the work on the core decomposition in
graphs. As mentioned earlier, the core number and the top core set has been used
in a number of applications, e.g., [6,3,19,28,21,18], in which the shell structure
and the top core sets have been found to give useful insights. Conditions for
existence of the k-core, and determining its size have been rigorously studied in
different random graph models, e.g., [25,13]; the main result is that there is a
sharp threshold for the sudden emergence of the k-core in these models. This has
also been analyzed in the statistical physics literature, e.g., [10]; these papers also
study the impact of node deletions on the core size in infinite graphs, and show
a characterization in terms of the second moment of the degree distribution.



3 Definitions and Notations

The k-core Ck(G) of an undirected graph G = (V,E) is defined as the maximal
subgraph of nodes in which each node has degree at least k; the core-number of
a node v is the largest k such that v ∈ Ck(G). The set Sk(G) = Ck(G)\Ck+1(G)
is referred to as the kth-shell of G; we omit G, and refer to it by Sk, when the
graph is clear from the context. The set Ck(G), if it exists, can be obtained by
repeatedly removing vertices of degree less than k until no further removal is
possible. The maximum k such that Ck(G) 6= φ will be denoted by kmax(G); we
use just kmax, when there is no ambiguity. The core decomposition of a graph
G corresponds to the partition S0, S1, . . . , Skmax of V . Let si = |Si|. We use
β(G) = 〈s1, s2, . . . , skmax〉 to denote the vector of shell size distribution in G.
The Jaccard index is a measure of similarity between two sets and is defined

as follows: For sets A and B, JI(A,B) = |A∩B|
|A∪B| . In our empirical analysis of

networks we compare the top j cores of the unperturbed and the perturbed
graphs using the Jaccard index. For this purpose we introduce the notation
ηj(G,G

′) := JI (∪i≥kmax−j+1Ci(G),∪i≥kmax−j+1Ci(G
′)). The variation distance

between the core-number distributions of two graphs G and G′ on the same
vertex set V is defined as, δ(G,G′) = 1

2|V |
∑
i |si(G)− si(G′)|. We say that an

event holds whp (with high probability) if it holds with probability tending to
1 as n→∞.

3.1 Noise Models

Since there is no clear understanding of how uncertainty/noise should be mod-
eled, we introduce a generalized noise model for edge perturbations which cap-
tures most models in literature, and also enables us to control separately the
extent of addition and deletion. Let G be the unperturbed graph. Let G = G(n)
denote a random graph model on n nodes which is specified by the probability
PG ((u, v)) of choosing the edge (u, v). We define a noise model N (G,G, εa, εd)
based on G as a random graph model where the edge probability between a pair
u, v is given by

PN ((u, v)) =

{
εaPG ((u, v)) , if (u, v) /∈ EG,
εdPG ((u, v)) , if (u, v) ∈ EG,

(1)

where εa and εd denote the edge addition and deletion probabilities, respec-
tively. The perturbed graph G′ = G ⊕ R is obtained by XORing G with R ∈
N (G,G, εa, εd), a sample from the noise model, i.e., if (u, v) ∈ EG, then it is
deleted with probability εdPG ((u, v)), but if (u, v) /∈ EG, (u, v) is added with
probability εaPG ((u, v)). Depending on how we specify PG and the parameters
εa, εd, we get different models; we consider three specific models below.
Uniform Perturbation (ERP): In this model we set G = G(n, 1/n), the Erdős-
Rényi random graph model where each edge is chosen with probability 1/n inde-
pendently, i.e., PG ((u, v)) = 1/n. We use the following notation for this model:
ERP(G, εa, εd) = N (G,G(n, 1/n), εa, εd). For example, ERP(G, ε, ε) corresponds to



adding an edge or removing an existing edge independently with probability ε/n,
while ERP(G, ε, 0) corresponds to only adding edges. This is the simplest model,
and has been studied in social network applications, e.g., [9,5].

Degree Assortative Perturbation (CLP): In this model, G corresponds to
the Chung-Lu random graph model [7] for graphs with a given expected degree
sequence. Each node u is associated with a weight wu (which we take to be
its degree), and edge is chosen independently with probability proportional to
the product of the weights of its endpoints, i.e., PG ((u, v)) ∝ wu · wv = d(u) ·
d(v). This model selects edges in a biased manner, and might be suitable in
applications dealing with assortative graphs with correlations between degrees
of the end points of edges, which has been observed in a number of networks,
e.g., [24].

Link Prediction Based Model (LPP): Instead of the purely stochastic ERP and
CLP models, we use the results of a missing link prediction algorithm to determine
which edges to perturb. Here, we use the algorithm of Clauset, et al. [8], which
has been used quite extensively in the social network literature; further, since it
uses a hierarchical random graph model, it can be viewed as an instance of our
generalized noise model. This model is based on the assumption that many real-
life networks have a hierarchical structure, which can be represented by a binary
tree with n leaves corresponding to the node (referred to as a “dendrogram”).
Given such a dendrogram D, each internal node r is associated with a probability
pr = Er

LrRr
, where Lr and Rr are the number of leaves in the left and right

subtrees of r respectively and Er is the number of edges between Lr and Rr
in G. The likelihood of D is defined as: L(D) = Πrp

Er
r (1 − pr)LrRr−Er . The

algorithm of [8] specifies the probability, PD((u, v)), of an edge between two
vertices u, v, to be the value pr, where r is the lowest common ancestor of u and
v in D.

In the ERP model, the expected number of perturbed edges is ≈ nε/2. For
the purpose of fair comparison of noise models, we have normalized the weights
of vertices in the CLP model such that the expected number of perturbed edges
is again ≈ nε/2. We use Gε to denote the perturbed network. In the LPP model,
we add edges as prescribed [8]; nε/2 edges are added in the decreasing order of
their associated probabilities.

Additions vs Deletions: We find that, due to sparsity of the networks consid-
ered, perturbations involving edge additions/deletions do not alter the results
by much, compared to perturbations involving just edge additions. Hence, unless
explicitly specified, we only consider addition of edges. Also, henceforth, when-
ever we use the truncated notations ERP and CLP, we refer to ERP(G, ε, 0) and
CLP(G, ε, 0), respectively.

Noise could also manifest in terms of missing nodes. We study a model of
random node deletions with probability 1 − p (which corresponds to retaining
nodes with probability p); we study the effect of this in the form of sampling in
Section 6, instead of perturbations.



3.2 Data

In order to make our results as robust as possible, we analyze over 25 differ-
ent real (from [22]) and random networks. We also used a Twitter mentions
graph, constructed in the following manner: we consider a set of about 9 million
tweets (corresponding to a 10% sample, obtained from a commercial source),
and construct a graph on the Twitter users, in which an edge (u, v) denotes a
mention of user v by user u (in the form of an “@v” in the tweet) or the other
way around; this graph has over 2 million nodes and about 4.6 million edges.
We then considered subgraphs constructed by sampling edges with probabil-
ity p ∈ [0.1, . . . , 0.99]; for p ∈ [0.1, . . . , 0.8], we use increments of 0.1, but for
p ∈ [0.8, 0.99], we use increments of 0.01, in order to increase the resolution. Fi-
nally, we also consider random graph models with Poisson and scale-free degree
distributions. Table 1 contains a summary of the graphs analyzed.

Table 1. Real-world and synthetic graphs used in our experiments and their properties.

Class Network N E kmax |Ckmax (G)|

Autonomous Systems
As20000102 6474 12572 12 21
Oregon1010331 10670 22002 17 32
Oregon2010331 10900 31180 31 78

Co-authorship

Astroph 17903 196972 56 57
Condmat 21363 91286 25 26
Grqc 4158 13422 43 44
Hepph 11204 117619 238 239
Hepth 8638 24806 31 32

Citation
HepPh 34546 420877 30 40
HepTh 27770 352285 37 52

Communication
Email-EuAll 265214 364481 37 292
Email-Enron 33696 180811 43 275

Social
Epinion 75877 405739 67 486
Slashdot0811 77360 469180 54 129
Soc-Slashdot0902 82168 504230 55 134
Twitter 22405 59898 20 177
Wiki-Vote 7066 100736 53 336
Twitter “mentions” 2616396 4677321 19 210

Internet peer-to-peer
Gnutella04 10876 39994 7 365
Gnutella24 26518 65369 5 7480

Synthetic graphs Regular (d = 20) 10000 100000 20 10000

4 Sensitivity of the Core Decomposition to Noise

We now study the effect of node/edge perturbations on the similarity index
ηj(G,G

′), and the changes in the shell size distribution β(G) in terms of the
variation distance, δ(G,G′) (see Section 3 for definitions). We study these quan-
tities on the networks mentioned in Section 3.2 and for the perturbation models
discussed in Section 3.1. For the ERP and CLP models, we compute 100 to 1000
instances, for each choice of ε, over which ηj(G,G

′) and δ(G,G′) are averaged.
The methodology for the LPP model is discussed later.



4.1 Sensitivity of the Top Cores

1. Sensitivity of the Top Core in the CLP Model: Figure 1 shows the variation
in η1(G,G′) for different networks in this model. The figure shows the variation
with both ε and α (the fraction of edges added), the latter to account for the
difference in the graph sizes. The most striking observation is the high sensitivity
of η1 and its highly non-monotonic variation in a large fraction of the networks.
The specific points where significant jumps in η1 happen correspond to the points
where kmax changes in many cases, as shown in Figure 1(c). The specific behavior
is highly variable and network dependent. For example, we note that while the
top cores in collaboration and citation networks are, in general, highly resilient
to perturbation, most social and peer to peer networks show great variation.
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(c)
Fig. 1. Top core comparison for various networks under degree-weighted edge per-
turbation CLP: Here, (c) is a zoomed plot of (b). This is complemented by a plot of
kmax(G′)−kmax(G) to depict the transition to a higher core and its effect on η1(G,G′).

2. Sensitivity of the top core in the ERP Model: In contrast to the CLP model, we
find that top cores are much more stable in the ERP model. The main reason for
this stability is the fact that almost all networks considered here have very small
fraction of nodes in the top core(s) (as shown in Figure 7 in the full version [2]),
so that most of the edges in the ERP model are added to low core nodes



3. Explaining the Differences Between the CLP and ERP Models: We note that in
the CLP model, the higher the degree of a node in the unperturbed graph, the
greater is the number of edges incident with it after perturbation. This polarizing
nature of the model needs to be taken into account to infer and quantify the
stability of the top core. Figure 6 in the full version [2] shows scatter plots of
core number vs. degree for some selected graphs. Even though it gives some
idea about the behavior of the top core, we find it highly non-trivial to quantify
the stability in any way. Later, in Section 5 we will be considering a theoretical
formulation of this problem and showing that such a quantification of stability
is in general hard.

4. Sensitivity of the Top 5 Cores: We extend our empirical analysis to ηj(G,G
′)

for j = 1, . . . , 5 in Figure 2. Note that the non-monotonic behavior is mitigated
in these plots, but ηj varies non-monotonically with j. However, as j is increased,
the size of Cj can become very large, thus diminishing the main utility of the
top cores in most applications.
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Fig. 2. Top 2–5 cores comparison (ηj(G,G
′), j = 2, . . . , 5) with respect to % increase

in edges (α). The legends are the same as in Figure 1.

5. Sensitivity in the LPP Model: We considered the stability of the top cores
in the LPP model by applying the link prediction algorithm given in [8]. We
first generated the list of likelihood probabilities for each possible edge. For this
purpose, we used the implementation of [11]. The edges were then added in the
descending order of their probabilities. As shown in Figure 3(a) for a subset of
graphs, the variation in η1 is very network specific, and hard to characterize.
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Fig. 3. Core stability with respect to LPP and ERP.

4.2 Sensitivity of the Shell Size Distribution and the Low Cores

To study the effect of perturbation on the core decomposition of a network, we
consider the variation distance δ(G,G′) (defined in Section 3). The results are
in Figure 3(b). As discussed above, the ERP model has greater impact on the
overall core-structure compared to the CLP model; in the ERP model, changes
happen to lower core structure which contain most of the nodes and hence leads
to large variation distance. We observe no significant change in δ(G,G′) under
the CLP model, as is evident from Figure 7 in [2].

We attempt to explain some of the observations about the changes in the
core structure analytically. First, we consider the impact of perturbations on the
2-core in any graph in the ERP model, and prove that for any constant ε > 0,
the 2-core always becomes of size Θ(n), which is consistent with the results in
Figure 7 in [2]. Our results are similar in spirit to the work of [14]. This only
explains the changes in the lowest core, and in order to extend it further, we
examine a quantity motivated by the “corona” [10], which corresponds to nodes
which need few edges to the higher cores in order to alter the core number. We
find that there is a large fraction of nodes of this kind in many networks, which
might help in characterizing the stability of the shell structure. This is discussed
in [2].

Theorem 1. Let G be any connected graph with n vertices and let Gp = G⊕R
where, R ∼ G(n, ε/n) and ε is a constant. Then, whp Gp has a 2-core of size
Θ(n).

Proof. (Sketch) Consider a spanning tree T of G. We show that T ⊕ R itself
has a Θ(n) sized 2-core. Let T− denote the subgraph obtained by removing the
edges common to T and R. Suppose ed is the number of edges removed from T .
Since each edge of T can be removed with probability ε/n, it can be verified that
whp O(log n) edges are removed from T , so that T− has O(log n) components
whp.

Let I be a maximum independent set of T−. We consider the graph induced
by I in R and consider the edges of R[I] (not belonging to T ) one at a time.



Let ei = (u, v) be the ith edge of R[I] added to T−. Let T−i = T−i−1 + ei with

T−0 = T−. If u and v belong to the same component of T−i−1, then, there is a

path P in T−i−1 with end points u and v and therefore, u and v both belong to
the 2-core in T ⊕R. However, when u and v belong to different components, this
does not happen. However, note that each time this happens, T−i has one less
component compared to T−i−1. Since T−0 has O(log n) components, there can be
at most O(log n) such edges.

Consider vertices in R[I] of degree at least 1. Note that |I| = cn for some
constant c ≥ 1/2. It is easy to see that whp a constant fraction of these vertices
in I have degree at least 1 in R[I]. Of these vertices, we will discard vertices
which are end points of an edge ei which is between two components of Ti−1
for some i. From the previous discussion, there can be only O(log n) such edges.
The rest of the vertices form a 2-core. Hence proved. ut

5 The CorePerturbation Problem

From Section 4.1, it follows that the sudden and non-monotone changes in the
similarity index correspond to an increase in the maximum core number. This
motivates the CorePerturbation problem, which captures the probability of
this change happening.

Definition 1. The CorePerturbation problem (CP(G,EA, p, k))
Input: A graph G(V,E), an integer k ≥ 4, edge probability p and a set of possible
edges EA (which are absent in G). Let Gp be the graph resulting from adding
edges to G from EA independently with probability p.
Output: Probability that Gp has a k-core.

Theorem 2. CP(G,EA, p, k) is #P -complete.

The proof of Theorem 2 is in the full version [2]. The result also holds when
kmax(G) = k − 1, which implies that even in a very simple noise model, quanti-
fying the precise effects of changes in the top core is very challenging. When this
probability is not too small (e.g., larger than 1/nc for some constant c > 0), it
can be shown that a polynomial number of Monte-Carlo samples can give good
estimates (within a multiplicative factor of 1 ± δ, with any desired confidence,
where δ > 0 is a parameter).

6 Sensitivity of the Core Decomposition to Sampling

We now address the issue of sampling and focus on ηk(G,Gp), where Gp denotes
a node/edge sampled graph with probability p— our goal is to understand to
what extent the core structure (especially the nodes in the top cores) can be
identified from sparsely sampled data. As in the case of noise (Section 4), we
find ηk is quite sensitive to sampling, and varies non-monotonically for many
graphs. We attempt to explain these results rigorously in the following manner:



(i) using the notion of edge density, we derive bounds on the maximum core in
sampled graphs, which show that it scales with p, (ii) we analyze the sampling
process in random graphs, and prove that the non-monotonicity in ηk is an
inherent issue related to the core structure.

6.1 Variation in ηk

Figure 4(a) shows the variation in η1(G,Gp) for all networks, for an edge sam-
pling probability p ∈ [0.8, 1]. We observe that η1 is quite low in many networks;
in order to identify at least 80% of the top core nodes (i.e., η1 ≥ 0.8), we need
p ≥ 0.6 in most networks. Figure 9 in the full version [2] shows additional results
on the effect of edge sampling on ηk, for k ∈ {1, 2, 5, 10}. Like in the case of edge
perturbations, we find ηk also exhibits non-monotonicity with respect to k for
most networks. Further, it is interesting to note that the citation networks are
very sensitive to sampling (and have η1 below 0.6), but were found to be quite
robust to edge perturbations (Section 4). However, collaboration networks seem
to be robust to sampling as in the case of edge perturbations. We find that node
sampling has a much higher impact than edge sampling; see Table 2 in the full
version [2] for details. For instance, with p = 0.95, we observe that η1 is below
0.9 for all but four of the networks, and is below 0.62 in three networks.
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Fig. 4. Top core comparison for various networks under sampling edges.



Biased Sampling in Twitter Networks. Since sampling is an inherent as-
pect of the APIs provided by Twitter, we study its effects on the top cores. Our
results for the Twitter mentions graph (see Section 3.2 for the details) are shown
in Figures 4(b) and 4(c). The graph is weighted, in which the weight of an edge
(u, v) corresponds to the number of mentions of u by v (or the converse). We
observed that ηk is generally quite low, but is somewhat higher when edges are
sampled with probability proportional to the edge weight (Figure 4(b)) instead
of uniform (Figure 4(c)). Moreover, there is high non-monotonicity in both sce-
narios, suggesting that Twitter’s public API is not adequate for identifying the
core structure with high confidence (say 80% or more), and multiple calls to the
API must be run to improve the accuracy. Table 3 in the Appendix of [2] gives
additional details on the max core values in the sampled graphs.

Bounding the Max Core on Sampling. A first step towards understanding
the effect of sampling is to determine kmax(Gp) in the sampled graph Gp. Table 3
in the full version [2] suggests that kmax scales with the sampling probability.

Lemma 1. Consider a graph G such that kmax(G) → ∞ as n → ∞. Let
Gp denote the random subgraph of G obtained by retaining each edge of G
with probability p, where p is a constant. Then, for any constant δ ∈ (0, 1),
kmax(Gp) > (1− δ)kmax(G)p/2, whp.

Proof. Let f(H) := |EH |
|VH | for any graph H. Let fmax(G) denote the maximum

edge density of any subgraph of G, i.e. max{f(H) : H induced subgraph of G}.
We first argue that for any graph G, fmax(G) ≤ kmax(G) ≤ 2fmax(G). Let
H be a densest subgraph of G, i.e. f(H) = fmax(G). The minimum degree
of H is at least f(H), for otherwise we can delete a vertex v ∈ VH which
satisfies d(v,H) < f(H) and the resulting graph H − v has edge density f(H −
v) = |EH |−d(v,H)

|VH |−1 > |EH |−f(H)
|VH |−1 = f(H), a contradiction. This implies kmax(G) ≥

f(H) = fmax(G). The other inequality is more straight forward: fmax(G) ≥
f (Ckmax

(G)) ≥ kmax(G)
2 .

Let H = Ckmax(G) and Hp = Gp[H], the graph induced by the vertices of H
in Gp. The expected value of |EHp | is: E

[
|EHp |

]
= |EH |p. Using the Chernoff

bound, we have, P (|EHp| ≤ (1− δ)|EH |p) ≤ exp
(
− δ

2|EH |p
2

)
, for δ ∈ (0, 1).

Since kmax → ∞ as n → ∞, it implies that |EH | → ∞, from which it follows

that kmax(Gp) ≥ kmax(Hp) ≥ f(Hp) >
(1−δ)|EH |p
|VH | ≥ (1−δ)kmax(G)p

2 ,whp. ut

6.2 Core Structure in Random Graphs

In order to understand our empirical observations about the sensitivity of the
core structure to noise and sampling, and especially the non-monotone behav-
ior, we now study the effect of sampling in random graph models. We consider
two random graph families: (a) the Erdős-Rényi random graphs and (b) Chung-
Lu power law random graphs [7] with node weights picked from a power-law
distribution (see Section 3 for a description of this model). Figure 5 shows the



sensitivity of ηk(G,Gp) to the sampling probability p. Figure 5(a) shows the
results for a random graph from G(n, p) for n = 10000 and p = 50/n and Figure
5(b) shows the results for a graph from the Chung-Lu model with power law
exponent 2.5, n = 10000 and average degree 5. We observe non-monotone vari-
ation in ηk with p; this is more pronounced in the case of the Chung-Lu model,
in which case ηk is quite low, which is consistent with the effect of perturbations
on real networks in Section 4. Further, we observe that the variation in ηk is
much smoother for k > 1, which is not the case of the networks in Section 4.
This non-monotone variation of ηk with the sampling probability is explained to
some extent through Lemma 2; by analyzing ηk in the Erdős-Rényi model, we
show rigorously that this is an inherent aspect of most graphs.
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Fig. 5. Non-monotonicity of top-cores in random graphs: (a) Erdős-Rényi model
G(n, c/n), with n = 10000 and c = 50; (b) Chung-Lu model with n = 10000 and
average degree 5.

Lemma 2. There exist constants c and pairs (p1, p2), where 0 < p1 < p2 < 1
such that for G ∈ G(n, c/n), η1(G,Gp1) > η1(G,Gp2) whp.

This lemma relies on the result of [20]. Suppose G ∈ G(n, λ/n). Let Po(µ) denote
a Poisson random variable with mean µ. For a positive integer j, let ψj(µ) :=
P (Po(µ) ≥ j) and let λj := minµ>0 µ/ψj−1(µ). Let, for λ > λj , µj(λ) > 0
denote the largest solution to µ/ψj−1(µ) = λ. Pittel et al. [25] show that if
λ < λk and k ≥ 3, then k-core Ck(G) is empty whp, while if λ > λk, |Ck(G)| =
ψk(µk(λ))n, whp.

Proof. (of Lemma 2) First we note that for G ∈ G(n, c/n), the random graph
sampled with probability p, Gp itself is a G(n, cp/n) random graph. We choose
c = 50, for which whp kmax(G) = 38 and |Ckmax

(G)| ≈ 0.91n. We set p1 = 0.102,
such that cp1 is slightly less than λ4 ≈ 5.15 (in the context of the result of [25]).
For this p1, kmax(Gp1) = 3 and |Ckmax

(Gp1)| ≥ 0.864n whp. We choose p2 =
0.198, such that cp2 is slightly more than λ7 ≈ 9.88. This means kmax(Gp2) = 7
and |Ckmax(Gp2)| ≈ 0.694n whp. Now we show that η1(G,Gp1) > η1(G,Gp2)
whp.

For any set U and subsets A,B ⊆ U , the following inequality follows trivially:
|A|+|B|−|U |

|U | ≤ JI(A,B) ≤ |B|
|A| . We set A = Ckmax(G) and U = V (G). Setting



B = Ckmax
(Gp1) and using the lower bound in the above inequality, the Jaccard

Index at p1 is ≥ 0.91 + 0.864−1 = 0.774. Setting B = Ckmax
(Gp2) and using the

upper bound in the above inequality, the Jaccard Index at p2 is ≤ 0.694/0.91 ≈
0.762. Hence, proved. ut

Remark 1. The proof of Lemma 2 is a rigorous analysis of the non-monotone
behavior seen in Figure 5(a) in the interval [0.1, 0.2]. Similar pairs can be demon-
strated for other values of c which correspond to kmax = 39, 40 and so on.

7 Conclusions

Our results show that the top cores show significant sensitivity to perturbations,
and can be recovered to a reasonable extent in sampled graphs, only if the
sampling rate is sufficiently high. These results suggest that a careful sensitivity
analysis is necessary when using the core structure, especially because of the
non-monotone effects on the similarity index of the top cores. Our formulation
of the CorePerturbation problem and its #P-hardness implies quantifying
the effects of uncertainty can be a challenging problem even in very simplified
noise models; developing efficient algorithms for this problem is an interesting
open problem. Further, the non-monotone behavior in the similarity index of the
top cores implies simple statistical tests that might try to improve the confidence
by bounding the uncertainty might not work. The reduced non-monotonicity in
ηk with k suggests considering the top few cores, instead of just the top core, as
a way of dealing with these effects; however, as we observe, this would require
considering a much larger set of nodes. The significant sensitivity to sampling
also suggests the need for greater care in the use of networks inferred using
small samples provided by public APIs of social media applications. We expect
our approach to be useful in the analysis of the sensitivity of other network
properties to noise and sampling.
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A Appendix

Here, we present additional empirical and analytical results on sensitivity of the
core structure to noise and sampling which could not be included in the main
section due to space constraints.

A.1 Fragility of the Top Core

We now show that the top core can be quite fragile when sampled, motivating
the need for “approximate” notions.

Lemma 3. For any integer k = ω(1), there exists a graph G with n ≥ Ω(ke2
√
k)

vertices, such that sampling with p = 1 − 2√
k

= 1 − o(1) leads to η1(G,Gp) = 0

whp.

Proof. Consider a graph G such that kmax(G) = k = ω(1) and H1 = Ckmax(G)
is a clique on k + 1 vertices. G has a (k − 1)-shell H2 comprising of a complete

bipartite graph Kk−1,l where l ≥ 2ke2
√
k. Now we show that for an edge sampling

probability as high as p = 1− 2√
k

, Ckmax
(Gp)∩Ckmax

(G) = ∅, i.e. η1(G,Gp) = 0

whp.
First, let us consider the clique, H1. We will show that whp no vertex in

H1 has core number ≥ k − 1 in Gp. Let X denote the number of edges in

H1 after sampling; E[X] = |EH1
|p =

(
k+1
2

)
p. Using Chernoff bound, we have,

P
(
X ≥

(
1 + 2√

k

)
E[X]

)
≤ exp

(
− 4
k
E[X]
3

)
≈ e−

2k
3 → 0 as n → ∞. Therefore,

whp there are at most
(

1 + 2√
k

) (
k+1
2

) (
1− 2√

k

)
=
(
k+1
2

) (
1− 4

k

)
=
(
k+1
2

)
−

2(k + 1) edges in H1 after sampling. By pigeon hole principle, this implies that
H1 has no vertex with core number ≥ k − 1 in Gp.

Now, we consider the (k − 1)-shell H2. We will show that whp H2 contains
an induced subgraph with minimum degree (k − 1) and hence there exists a
(k − 1)-core in Gp. Since no vertex of H1 belongs to this core whp, it implies
that η1(G,Gp) = 0. Let A,B be the bipartition of H2 such that |A| = k − 1
and |B| = l. For v ∈ B, probability that all its edges are retained in Gp is

pk−1 =
(

1− 2√
k

)k−1
≤ e−2

√
k−1. Therefore, expected number of vertices all of

whose edges are retained is l ∗ e−2
√
k−1 > 2k. Using Chernoff bound, it follows

that whp more than k vertices of B have degree k− 1 in H2. Hence, H2 has an
induced subgraph with minimum degree k − 1. ut

A.2 Bounding the Maximum Core Size

Even though the proof of Lemma 1 in Section 6 establishes a quantitative link
between kmax(G) and fmax(G), the actual kmax-core and the maximal densest
subgraph (the union of densest subgraphs) need not be related. We will illustrate
this with an example. For a suitably large integer k, consider a graph comprising



of two copies of a connected k-regular non-complete graph and denote them as
H1 and H2. For convenience, we keep H1 and H2 as separate components but
the following statements hold even if they are connected albeit carefully. Now,
we remove one edge (u, v) from H2 but add two edges between two pairs of
vertices none of which contain v. In the resulting graph G, by construction, for
all induced subgraphs H ′ of H1, f(H2) > k/2 ≥ f(H ′). Therefore, the densest
subgraph of G is some induced subgraph of H2. Further, observe that H2 has no
induced subgraph of minimum degree ≥ k; we added just two edges to H2 and
since k is sufficiently large, every proper induced subgraph of H2 has minimum
degree < k and H2 itself has vertex v with degree k − 1 to begin with. H1,
however is a k-regular graph. Hence, kmax(G) = k and the kmax-core is precisely
H1.

A.3 Correlation Between the Core Number and Degree

A.4 Sensitivity of Core Decomposition to Noise

Figure 7 shows shell size distributions for several networks. There are two plots
for each network: The left plot shows the entire distribution showing the effect
of ERP noise model on core decomposition. The right plot is a zoom in on the
distribution of the top few core-numbers showing the effect of CLP noise model
on the top core structure.

Explaining the Changes in Low Core Nodes Note that for the star graph
we need at least Θ(n) edges to be added for Θ(n) vertices to move to 2-core,
which shows that Theorem 1 is tight. Explaining the changes in higher core
numbers seems harder, but we observe that in most networks that susceptibility
of a node to an increase in core number after perturbation depends significantly
on the how many neighbors it has in higher cores. We formalize this in the
following manner. For a node v, let k(v) and d>(v) denote the core number
and number of neighbors in higher cores, respectively. Let f(v) = k(v)− d>(v).
Note that f(v) ≥ 0, for otherwise, v would have a core number ≥ k(v) + 1.
Also, f(v) ≤ maxw k(w) = kmax(G), and for all v with k(v) = kmax(G), f(v) =
kmax(G). Figure 8 shows the frequency distribution of f(·) for the vertices whose
core numbers increased after perturbation in the Epinions network; the Appendix
for additional plots); model with ε = 1; observe that most of the nodes whose
core number increased are in the lower cores, which explains the changes in the
variation distance.

A.5 Proof of Theorem 2

An outline of the proof follows: We first introduce a problem called Ran-
domVertexCover and show that it is #P hard. Then, we describe a con-
struction to reduce this problem to the CorePerturbation problem.
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Fig. 6. Scatter plots of core number (x axis) vs. degree for various networks.
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Fig. 7. Shell size distributions for some networks
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Fig. 8. The frequency distribution of f(v) restricted to vertices whose core number
changes after perturbation under CLP model.

Definition 2. The RandomVertexCover problem (RVC(G,S, p)):
Given a graph G(V,E) and a random set S ⊆ V obtained by choosing each vertex
independently with probability p, compute the probability that S is a vertex cover
of H.

Theorem 3. The RandomVertexCover problem is #P -complete.

The proof results from a direct application of techniques used in [26,30]. We are
not aware of any proof of this statement in the literature.

Proof. First we note that the following problem is #P -complete [17]: Cardi-
nality vertex cover: Given a graph H and an integer a, what is the number
of vertex covers of size a?

Let f(p) denote the probability that S is a vertex cover of H. It can be
expressed as

f(p) =

n∑
i=1

Aip
i(1− p)n−i = (1− p)n

n∑
i=0

Ai

(
p

1− p

)i
, (2)

where Ai is the number of vertex covers of cardinality i and n is the number of

vertices in H. Now we observe that the matrix B = (bjl) where, bjl =
(

pj
1−pj

)l
for j, l = 0, 1, . . . , n is a Vandermonde matrix for any choice 0 < p0 < p1 < · · · <
pn < 1. By evaluating (2) at all pj , we can solve for Ais in polynomial time and
therefore, solve the cardinality vertex cover problem. Hence proved. ut

Construction Let G′ be the graph corresponding to the vertex cover instance.
We construct a graph G from G′ as follows. Let A denote a set of vertices in G
with a one to one mapping with V (G′) and let B denote a set of vertices with a
one to one mapping with the edge set E(G′). Let C(r, k−1, l) denote a (k−1)-ary
tree rooted at r such that the number of leaves is at least l (but as close to l as



possible). For each vertex v in A, we introduce a unique tree Cv = C(v, k− 1, l)
where, l = max (k + 4, |B|). Let C =

⋃
v∈A V (Cv) \ {v}, the set of all vertices

of the (k − 1)-ary trees minus their roots. Let z denote what we call the “zero
vertex”. We introduce a (k − 1)-ary tree rooted at z: C(z, k − 1, |B|). Let Y be
the set of vertices in this tree minus z. Let D correspond to a set of k vertices.
Further, A, B, C, D, Y and {z} are disjoint vertex sets. The union of all these
sets is the vertex set of G, which we denote as V .

Recall that B corresponds to E(G′). For each e ∈ B, there are two vertices
u, v ∈ A which correspond to the end points of e in G′. We choose two unique
leaves, one from Cu and the other from Cv and make them adjacent to e. Note
that since l ≥ |B|, there are enough leaves available in both Cu and Cv to assign
in this manner. At the end of this process, in each Cw, w ∈ A, every leaf is
adjacent to at most one vertex in B. Now we add edges between B and leaf
nodes of Y such that every vertex in B is adjacent to exactly two leaves while
every leaf is adjacent to at most two vertices in B. Now consider v ∈ B ∪C ∪ Y
and let d(v) be its current degree. It can be easily verified that for v ∈ C ∪ Y ,
1 ≤ d(v) ≤ k and for v ∈ B, d(v) = 4 ≤ k. Every v ∈ Y is made adjacent
to k − d(v) vertices from D and every v ∈ B is made adjacent to k + 1 − d(v)
vertices from D. Every v ∈ Cv, v ∈ V , is made adjacent to k−d(v) vertices from
D such that the following condition holds:

Condition 1 The edge assignment between Cv, v ∈ V and D is such that every
vertex in D has at least k neighbors in Cv. The existence of such an assignment
is guaranteed by the fact that there are at least l ≥ k+ 4 leaves in Cv and k ≥ 4.
Here is one way of assigning: Let D = {v1, . . . , vk} and let u1, . . . , uk+4 be some
k + 4 leaves of Cv. We recall that each ui must have at least k − 2 neighbors
in D; For i = 1, . . . , k, we add edges from ui to vi, vi+1, . . . , vi+k−2 (where the
indices are mod k). For i = k + 1, k + 2, we add edges from ui to v1, . . . , vk−2
and for i = k + 3, k + 4, we add edges from ui to v3, . . . , vk. Note that for some
uis, we may need to add one more edge to D; this can be arbitrarily assigned.

The set EA: The set of candidate edges to add is EA = {(z, v) : v ∈ A}, i.e.
all possible edges from z to A.

Remark 2. A summary of the degrees of vertices in G: z has degree k − 1. All
vertices in A have degree k−1. All vertices in C∪Y have degree k. Every vertex
in B is adjacent to exactly two vertices in Y , two vertices in C and k−3 vertices
in D. Hence, the degree of each vertex in B is k+1. From Condition 1, it follows
that all vertices in D have degree at least k.

Lemma 4. Let S ⊆ A be the end-points of edges of EA that were added to Gp.
Gp has a k-core if and only if S corresponds to a vertex cover of G′.

Proof. Suppose S corresponds to a vertex cover of G′. We inductively remove
vertices with degree < k and uncover a non-empty k-core in Gp. Note that to
start with all vertices in A which do not have an edge to z have degree k−1 (see
Remark 2). We remove all these vertices. For each vertex v ∈ A that is removed,



the vertices of Cv are removed inductively. Now we show that the residual graph
is the k-core of Gp. Each remaining vertex in A has degree k. The remaining
vertices of C had no neighbors among the removed vertices. Hence their degree
is k. Since S is a vertex cover, every edge of G′ has at least one end point in S.
Hence, every vertex in B is adjacent to at least one vertex in C and therefore,
its degree is at least k (see Remark 2 for the neighborhood of vertices of B). z
is adjacent to all k − 1 vertices in Y and at least one vertex in A (assuming S
is non-empty, for otherwise, G′ is a trivial graph with no edges). Therefore, its
degree is at least k. Next, we consider D. Since S is non-empty, there exists some
v ∈ A and therefore a Cv which remains in the residual graph. From Condition 1,
it follows that every vertex in D has degree at least k. Finally, we note that the
neighborhood of vertices of Y is unaffected and hence the degree of each vertex
is k. Hence, G has a k-core comprising of {z} ∪B ∪D ∪ Y ∪

(⋃
v∈S{v} ∪ Cv

)
.

Suppose S is not a vertex cover of G′. As before, we inductively remove
vertices of degree < k to uncover the k-core. First, we remove all v ∈ A \ S
and corresponding Cv. Since S is not a vertex cover, there exists at least one
edge e ∈ G′ not covered by S. The corresponding node in B has no neighbor
in C and hence, its degree is k − 1 in the residual graph; we remove e from the
graph. Now, the vertices in Y to which e was adjacent to have degree k− 1 and
hence are removed (See Remark 2 for the neighborhood of vertices of Y ). This
is followed by the removal of all vertices in Y inductively. Now, each remaining
vertex in B has degree k− 1. These are removed, followed by remaining vertices
of C, then A, z and finally D. Hence, G has no k-core. ut

A.6 Details of Section 6



Table 2. Node sampling in networks and its effect on the core structure: We use
Jaccard index to compare the top cores of the sampled and original graph.

Network N E kmax

Jaccard index (ηj(G,Gp))
p = 0.95 p = 0.91

1 2 5 4 5 1 2 3 4 5
Autonomous Systems
as20000102 6474 12572 12 0.909 0.874 0.821 0.806 0.841 0.822 0.809 0.734 0.723 0.753
oregon1010331 10670 22002 17 0.888 0.867 0.771 0.858 0.891 0.840 0.804 0.717 0.782 0.831
oregon2010331 10900 31180 31 0.850 0.865 0.880 0.872 0.902 0.785 0.814 0.828 0.828 0.856
Co-authorship
Astroph 17903 196972 56 0.617 0.637 0.665 0.666 0.722 0.542 0.559 0.601 0.600 0.641
Condmat 21363 91286 25 0.903 0.831 0.726 0.831 0.914 0.797 0.728 0.677 0.749 0.731
Grqc 4158 13422 43 0.937 0.943 0.940 0.940 0.931 0.891 0.899 0.904 0.897 0.881
Hepph 11204 117619 238 0.949 0.949 0.949 0.949 0.949 0.910 0.910 0.910 0.910 0.910
Hepth 8638 24806 31 0.946 0.946 0.946 0.939 0.917 0.908 0.901 0.901 0.888 0.883
Citation
HepPh 34546 420877 30 0.562 0.303 0.618 0.754 0.805 0.468 0.256 0.605 0.690 0.751
HepTh 27770 352285 37 0.574 0.630 0.401 0.681 0.746 0.500 0.554 0.444 0.622 0.707
Communication
Email-EuAll 265214 364481 37 0.852 0.832 0.902 0.895 0.909 0.802 0.763 0.844 0.844 0.859
Email-enron 33696 180811 43 0.884 0.869 0.860 0.873 0.886 0.817 0.814 0.801 0.817 0.830
Social
Epinion 75877 405739 67 0.796 0.873 0.900 0.905 0.904 0.774 0.820 0.851 0.853 0.852
Loc-brightkite 58228 214078 52 0.809 0.890 0.917 0.912 0.924 0.714 0.793 0.836 0.853 0.863
Loc-gowalla 196591 950327 51 0.778 0.892 0.872 0.902 0.886 0.746 0.833 0.822 0.852 0.820
Slashdot0811 77360 469180 54 0.890 0.919 0.898 0.896 0.905 0.840 0.878 0.852 0.849 0.862
Soc-Slashdot0902 82168 504230 55 0.883 0.933 0.916 0.907 0.912 0.826 0.870 0.860 0.852 0.858
Twitter 22405 59898 20 0.844 0.785 0.824 0.863 0.856 0.783 0.705 0.748 0.808 0.806
Wiki-Vote 7066 100736 53 0.839 0.865 0.883 0.872 0.876 0.779 0.808 0.833 0.810 0.829
Internet peer-to-peer
Gnutella04 10876 39994 7 0.864 0.893 0.927 0.931 0.933 0.611 0.794 0.864 0.871 0.872
Gnutella24 26518 65369 5 0.885 0.918 0.923 0.925 0.93 0.784 0.854 0.863 0.866 0.875

Table 3. Average top core numbers after sampling in the Twitter graph.

edge sampling Average kmax Average kmax

probability (weighted) (unweighted)
0.1 10.0 3.0
0.2 10.02 5.0
0.3 11.07 6.75
0.4 12.77 8.17
0.5 14.2 10.03
0.6 15.06 11.99
0.7 15.96 13.67
0.8 16.88 15.07
0.9 17.81 17.0
1.0 19 19



 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

J
a
c
c
a
rd

 I
n
d
e
x

Sampling probability p

Edge sampling in epin.giant network

top core
top 2 cores
top 3 cores
top 4 cores
top 5 cores

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

J
a
c
c
a
rd

 I
n
d
e
x

Sampling probability p

Edge sampling in Twitter network

top core
top 2 cores
top 3 cores
top 4 cores
top 5 cores

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

J
a
c
c
a
rd

 I
n
d
e
x

Sampling probability p

Edge sampling in loc-gowalla network

top core
top 2 cores
top 3 cores
top 4 cores
top 5 cores

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

J
a
c
c
a
rd

 I
n
d
e
x

Sampling probability p

Edge sampling in wiki.giant network

top core
top 2 cores
top 3 cores
top 4 cores
top 5 cores

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

J
a
c
c
a
rd

 I
n
d
e
x

Sampling probability p

Edge sampling in p2p-Gnutella25 network

top core
top 2 cores
top 3 cores
top 4 cores
top 5 cores  0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

J
a
c
c
a
rd

 I
n
d
e
x

Sampling probability p

Edge sampling in cit-hepph.giant network

top core
top 2 cores
top 3 cores
top 4 cores
top 5 cores

Fig. 9. The effect of edge sampling on the top cores in some networks We have plotted
the Jaccard Index for p varying in steps of 0.1 in the interval [0, 0.9] and in steps of
0.01 from 0.9 onwards. Therefore, we have more resolution in the interval [0.9, 1].
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