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Abstract
Simple diffusion processes on networks have been used to model, analyze and predict

diverse phenomena such as spread of diseases, information and memes. More often than
not, the underlying network data is noisy and sampled. This prompts the following natural
question: how sensitive are the diffusion dynamics and subsequent conclusions to uncertainty
in the network structure?

In this paper, we consider two popular diffusion models: Independent cascade (IC) model
and Linear threshold (LT) model. We study how the expected number of vertices that are
influenced/infected, for particular initial conditions, are affected by network perturbations.
Through rigorous analysis under the assumption of a reasonable perturbation model we
establish the following main results. (1) For the IC model, we characterize the sensitivity to
network perturbation in terms of the critical probability for phase transition of the network.
We find that the expected number of infections is quite stable, unless the transmission
probability is close to the critical probability. (2) We show that the standard LT model
with uniform edge weights is relatively stable under network perturbations. (3) We study
these sensitivity questions using extensive simulations on diverse real world networks and
find that our theoretical predictions for both models match the observations quite closely.
(4) Experimentally, the transient behavior, i.e., the time series of the number of infections,
in both models appears to be more sensitive to network perturbations.

1. Introduction

A number of diverse phenomena are modeled by simple diffusion processes on graphs, such
as the spread of epidemics (Newman, 2003), viral marketing (Kempe, Kleinberg, & Tardos,
2005; Goldenberg, Libai, & Muller, 2001) and memes in online social media (Romero, Meeder,
& Kleinberg, 2011; Bakshy, Hofman, Mason, & Watts, 2011). It is common to associate with
each vertex a state of 0 (denoting “not infected” or “not influenced”) or state 1 (denoting
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“infected” or “influenced”) in these models; each node in state 0 switches to state 1 based
on a probabilistic rule and nodes in state 1 remain in state 1. We focus on two such
models, referred to as the independent cascade (IC) model (which is a special case of the SIR
process), and the linear threshold (LT) model. In most applications, however, the underlying
networks are inherently noisy and incomplete, since they are often inferred by indirect
measurements, for instance: (i) networks based on Twitter data (González-Bailón, Borge-
Holthoefer, Rivero, & Moreno, 2011; Bakshy et al., 2011; Galuba, 2010) are constructed
by limited samples available through public APIs, (ii) biological networks are inferred by
experimental correlations (Hagmann, 2008; Schwab, Bruinsma, Feldman, & Levine, 2010),
which might be incomplete, and (iii) the Internet router/AS level graphs are constructed
using traceroutes (Faloutsos, Faloutsos, & Faloutsos, 1999), which are known to give a biased
and incomplete structure (Achlioptas, Clauset, Kempe, & Moore, 2005).

This raises a fundamental issue for diffusion processes on networks: How does the
uncertainty in the network affect the conclusions drawn from a study of the diffusion
dynamics over that network? For instance, how robust is an inference that there will be
no large outbreak in the network, in the face of noise/uncertainty in the network? Recent
statistical and simulation-based studies involving perturbation of the network by “rewiring”
pairs of edges (which preserves the degree sequence) show that changes in the network
structure significantly alter the dynamics even when aggregate structural properties such
as the degree distribution and assortativity are preserved (Eubank, 2010; Chen, 2010).
Surprisingly, there is limited mathematically rigorous work to explain the empirical findings
in a systematic manner, despite a large body of research on diffusion models.

Our work is motivated by these considerations of sensitivity of the dynamics to noise and
the adequacy of sampling of a network G = (V,E). Since there is very limited understanding
of how noise should be modeled, we consider two simple random edge perturbation models
for noise: uniform and degree-assortative. In uniform perturbation, each pair u, v of vertices
is selected for edge addition or deletion (or both) with probability ε

n , where ε > 0 is a
parameter, and n is the number of vertices; thus, on average, the perturbed graph differs in
ε
n

(n
2
)
≈ εn

2 edges. This model has been used quite extensively both in social network analysis
and computer science for understanding the sensitivity to graph properties (Costenbader
& Valente, 2003; Borgatti, Carley, & Krackhardt, 2006; Flaxman & Frieze, 2004; Flaxman,
2007). We study how the expected number of infections, given some initial conditions,
is affected by the magnitude of the perturbation parameter, ε. In the degree-assortative
perturbation, the probability of an edge modification is proportional to the product of the
degrees of the end points in G.

1.1 Our Contributions

All the results we obtain are under the assumption of the uniform edge addition model, i.e.,
edges absent in the network are added with probability ε

n to obtain the perturbed network.
Later, in Section 5, we compare the addition model with the addition/deletion model and
also discuss our results on degree-assortative perturbation. We describe the independent
cascade and linear threshold models in Section 2.2.
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1.1.1 Independent Cascade Model

We consider networks G which exhibit a phase transition in the infection sizes, with a critical
transition probability pc (see Section 2 for definitions). In Theorem 1, we characterize the
expected number of infections in the perturbed graph in terms of transmission probability p
and pc for a single random seed node. When p < pc, we show that there exists a threshold εt
such that for any positive constant c < 1: (i) if ε < (1− c)εt, and in addition, if pc and the
average degree davg satisfy a technical condition, then, the expected number of infections in
the perturbed graph remains close to that in G and, (ii) if ε > (1 + c)εt, there is a phase
transition, and the expected number of infections after perturbation is much larger than that
in G. The main implication is that the dynamics are quite robust to perturbations, unless
the transmission probability is close to pc, and ε is over some critical value. We find this to
be consistent with extensive simulations on a large number of real networks—the sensitivity
to perturbations is maximized at a point which approximately matches the experimentally
determined threshold εt in many networks. We also examine the transient behavior (i.e., the
time series of the number of infections) studying in particular how the time and magnitude
of the peak number of new infections are affected by uncertainty. We find these measures to
be more sensitive than the expected total number of infections.

1.1.2 Linear Threshold Model

In Theorem 2, we show formally that for any network G with maximum degree ∆ =
O(n/ logn), the expected number of infections after perturbation, starting at s random
initial infections, is bounded by O(s(∆ + ε+ logn) logn). This implies that the dynamics
are quite stable for low s and ε. Our result is based on the analysis of the random graph
model in which each node selects a random in-edge. This is shown to “correspond” to the
LT model (Kempe, Kleinberg, & Tardos, 2003). We first show that the diameter is bounded
by O(∆′ logn), where ∆′ is the maximum degree of the perturbed graph, and then prove
that the expected number of infections, starting at a random source, is bounded by the
diameter. Our theoretical bounds corroborate well with our experimental observations on a
large set of real networks, which show a gradual variation with ε. We find that the expected
number of infections grows more sharply with ε, as the number of sources is increased.

1.1.3 Discussion and Implications

From the point of view of dynamical system theory, our work may be regarded as a study of
stability of dynamics over a network with respect to the edge structure. The existence of the
critical value for the parameter ε in the IC model can be thought of as a bifurcation point.
Admittedly, our results only hold for the specific random edge perturbation model of noise;
uncertainty in networks is a much more complex process, and might involve dependencies
arising out of the network evolution. Although we focus on specific dynamical properties
and the random edge perturbation model, our results give the first rigorous theoretical
and empirical analysis of the noise susceptibility of these diffusion models. Further, our
analytical and empirical techniques, based on the random graph characterization, are likely
to help in the analysis of other more complex noise models, which take dependencies into
account.
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1.2 Related Work

Noise and issues of sampling are well recognized as fundamental challenges in complex
networks, and there has been some work on characterizing it and the sensitivity to different
parameters, especially in network properties. In some works (Costenbader & Valente, 2003;
Borgatti et al., 2006), certain centrality measures are shown to be robust to random edge
and node perturbations, and in another (Achlioptas et al., 2005), it is shown that there is
an inherent bias in traceroute-based inference of the Internet router network, which might
give incorrect degree distributions. Flaxman and Frieze (Flaxman & Frieze, 2004; Flaxman,
2007) formally characterize conditions under which the graph expansion and diameter are
highly sensitive to random edge additions; these are among the few analytical results of this
type. Some of the approaches to address noise include: (i) the prediction of missing links
using clustering properties (Clauset, Moore, & Newman, 2008), and (ii) “property testing”
algorithms (Ron, 2010) and “smoothed analysis” (Spielman, 2009) for efficient computation
of graph properties.

To our knowledge, most work on the sensitivity of graph dynamical systems to noise
in a network is empirical. However, for regular networks such as rings, topics such as
synchronization and bifurcations are studied (Kaneko, 1985; Wu, 2005). As discussed
earlier, the effects of changes in a network by edge rewirings on epidemic properties are
investigated (Eubank, 2010; Chen, 2010). The effect of stochastic changes in the network on
influence maximization problems is studied (Lahiri, Maiya, Caceres, Habiba, & Berger-Wolf,
2008). Using simulations, they find that in the LT model, the spread size is quite robust;
our techniques help explain some of these observations.

1.2.1 Organization

In Section 2, we introduce notation and describe the noise models and diffusion models in
detail. In Sections 3 and 4, we analyze the sensitivity of IC and LT models, respectively.
Experimental results are presented in Section 5, and we conclude in Section 6.

2. Preliminaries

We consider only undirected, simple networks. For a network G = (V,E), let ∆ denote its
maximum degree and davg, its average degree. For any vertex v, deg(v,G) and N(v) denote
its degree and the set of neighbors respectively. Let λ correspond to the largest eigenvalue of
the adjacency matrix of G. We say that an event A(n) occurs asymptotically almost surely
(a.a.s.) if P (A(n))→ 1 as n→∞.

2.1 Noise Models

Since there is no consensus on the best way to model uncertainty and noise, we consider
two simple models of random edge modifications: (i) uniform and (ii) degree-assortative
perturbations. Uniform perturbation has been studied quite extensively in social network
analysis (Costenbader & Valente, 2003; Borgatti et al., 2006); some problems have also
been studied analytically in this model (Flaxman & Frieze, 2004; Flaxman, 2007). Let
G = (V,E) be the unperturbed graph; all graphs in this work are undirected and simple.
Let Ru(ε) = (V,E(ε)) be a random graph on V in which each pair u, v ∈ V is connected
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with probability ε
n . In our analysis, we consider perturbations involving just addition of

edges: This is denoted by G+Ru(ε), and consists of all edges (u, v) ∈ E ∪ E(Ru(ε)). For
our experimental studies, we also considered addition/deletion of edges. In this case, the
perturbation graph G′ = G⊕Ru(ε) is a graph constructed in the following manner: each
pair u, v ∈ V is connected in G′ if (u, v) ∈ Ru(ε)− E or (u, v) ∈ E −Ru(ε). In other words,
each pair u, v is selected for addition/deletion with probability ε

n . In the degree-assortative
perturbation model, we consider random graph Rd(ε) for which u, v ∈ V are adjacent with
probability

(
deg(u,G) deg(v,G)

d2
avg

)
ε
n , i.e., the edge probability is proportional to the product of the

degrees of the end points in G. In both models, the expected number of edge modifications
is approximately εn

2 .

2.2 Network Diffusion Models

Let G = (V,E) denote an undirected network. In all the models we study, each vertex v ∈ V
can be in state xv ∈ {0, 1}, with state 0 denoting “inactive/uninfected/uninfluenced” and
state 1 denoting “active/infected/influenced,” depending on the application. We restrict
ourselves to monotone or progressive processes, i.e., an infected node stays infected. Each
node is associated with an activation function whose inputs include the states of its neighbors.
This function computes the next state of the node. The diffusion process starts with a few
vertices set as active/infected; we refer to this set as the initial set or the seed set. For
an initial set of active nodes S, let σ(S) denote the expected number of active nodes at
termination. These models always reach fixed points. We consider the following models:

(1) Independent Cascade (IC) Model (Kempe et al., 2003): This model is a special case of
the SIR model for epidemics. An infected node v infects each neighbor w with probability
p (referred to as the transmission probability). Equivalently, each edge (v, w) can be
live with probability p, independently of all other edges. All those nodes which are
connected to the initial set through a live path are considered infected. In the graph,
let (v, x) be an edge. Suppose v gets infected at time t, and x is in state 0. Then v
tries to infect x with probability p at time t+ 1. Irrespective of whether x gets infected
by v, v remains in state 1 for all subsequent times, but never again tries to infect x.

(2) Linear Threshold (LT) Model (Kempe et al., 2005): Each node v has a threshold
θv ∈ [0, 1], chosen uniformly at random. Node v is influenced by its neighbor w
according to weight bv,w such that

∑
w∈N(v) bv,w ≤ 1. Node v becomes infected if∑

w∈A(v) bv,w ≥ θv, where A(v) ⊆ N(v) is the set of neighbors of v which is currently
infected. In our analysis and experiments, we assume that bv,w = 1/deg(v,G) for all
w ∈ N(v), where deg(v,G) is the degree of v in G. This means that v is influenced
equally by all its neighbors. This model was considered in (Kempe et al., 2003). In
the perturbed graph G′ = G+Ru(ε), bv,w = 1/ deg(v,G′), where deg(v,G′) is the new
degree of v.

3. Analyzing the Sensitivity of the IC Model

In this section, we rigorously analyze the sensitivity of the IC model to edge perturbations.
As mentioned earlier, we restrict our attention to uniform edge addition model, i.e., the
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perturbed graph is obtained by adding an edge between every pair of vertices with probability
ε/n.

Before stating the main result, we discuss some aspects of the IC model and develop
notation which will be used in the analysis. For a transmission probability p, let G(p)
denote a random subgraph of G obtained by retaining edges of G with probability p. The
relationship between infection spread in the IC model and the structure of G(p) is well-known;
the question of whether or not a large spread occurs in G is equivalent to asking if there
exists a giant component in G(p). Another interesting aspect is that the IC model exhibits
a threshold phenomenon. For many graph families there exists a critical transmission
probability pc at which an abrupt phase transition occurs from a “small” spread at p < pc to
a large one at p > pc with high probability. A formal definition of pc follows (see (Bollobás,
1985) for more details).

Definition 3.1. For a graph G on n nodes, pc is the critical transmission probability if
starting with a single random initial infection, for any transmission probability p � pc
the total number of infections is a.a.s. o(n) or equivalently, all components in G(p) are of
size o(n), while for p� pc, the number of infections is a.a.s. Θ(n) or there exists a giant
component in G(p).

Recall from Section 2 that the notion of asymptotically almost surely is formally defined for a
sequence of graphs. However, we do not state this explicitly, in order to reduce the notational
overload. Now we state our main result of this section where we analyze the sensitivity of
the IC model for a graph operating at probability p < pc and satisfying pdavg � 1 where,
davg is the average degree of G. We conclude with a discussion on the implications of this
theorem.

Theorem 1. Consider a graph G on n nodes with average degree davg and critical transmis-
sion probability pc. Let the transmission probability p satisfy pdavg = o(1) and p = Ω

(
1/n1−δ)

for some constant δ. Let G+Ru(ε) be the perturbed graph obtained by adding edges uniformly
at random with factor ε. Then, for a single seed node chosen uniformly at random, the
following hold:

(a) The number of infections in G is o(n) a.a.s. and therefore, p < pc.

(b) If pdavg = o
(
1/ log2 n

)
, then, there exists a threshold perturbation factor εt = 1

p such that
for any positive constant c < 1, if ε ≤ (1− c)εt, the number of infections in G+Ru(ε)
for a transmission probability of p is a.a.s. o(n) while if ε ≥ (1 + c)εt, the number of
infections is Θ(n).

(c) For any positive constant c, if ε ≥ 1+c
p , the number of infections in G+Ru(ε) is a.a.s.

Θ(n).

Proof. Let G′ = G+Ru(ε) and let G′(p) be the random subgraph of G′ obtained by choosing
edges with probability p. Since, for any edge e /∈ E(G), Pr(e ∈ G′(p)) = p×Pr(e ∈ Ru(ε)) =
εp
n , it follows that G

′(p) can be obtained by adding edges between every pair of nodes in
G(p) with probability εp

n . Now, we will prove Statement (a).
Claim 1. The number of components in G(p) with more than one node is O

(
n
√
pdavg

)
a.a.s.

and therefore, G(p) has no giant component.
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Proof. We use Chebychev’s inequality. For any x > davg, the number of nodes with degree
greater than x in G is at most n

(
davg
x+1

)
< n

(
davg
x

)
. Let niso denote the number of isolated

nodes in G(p). Then,

E[niso] =
∑

v∈V (G)
Pr(v is isolated) ≥

∑
v∈V (G),deg(v,G)≤x

Pr(v is isolated)

≥ (1− p)xn
(

1− davg
x

)
> (1− px)n

(
1− davg

x

)
.

Choosing x to be
√
davg/p, E[niso] ≥

(
1−

√
pdavg

)2
n ≥

(
1− 2

√
pdavg

)
n. Since by assump-

tion, davg = o(1/p), E[niso] = (1 − o(1))n. For any node v ∈ V (G), let Iv = 1 if v has no
neighbors in G(p) and 0 otherwise. Let Var[·] and Cov[·] denote the variance and covariance,
respectively. Using the bounds Var[Iv] ≤ E[Iv] and Cov[IaIb] = P (Ia ∩ Ib) ≤ 1,

Var[niso] =
∑

v∈V (G)
Var[Iv] + 2

∑
(a,b)∈E(G)

Cov[IaIb]

≤ E[niso] + 2
∑

(a,b)∈E(G)
Cov[IaIb] ≤ E[niso] + ndavg = O(ndavg) .

Since we have assumed that p = Ω
(
1/n1−δ), it follows that Var[niso] = O

(
n2−δpdavg

)
.

Applying Chebychev’s inequality,

P
(
|niso − E[niso]| > n

√
pdavg

)
≤ P

(
|niso − E[niso]| >

√
nδVar[niso]

)
≤ 1
nδ
.

Therefore, a.a.s., n− niso ≤ 3n
√
davgp. �

Let {Ci | i ∈ N} be the set of connected components in G(p), where N is the number of
components and let ni denote the size of Ci. The probability that components Ci and Cj
are connected by at least one edge of Ru(ε) in G′(p) is at most ninjεp

n . Let Siso denote the
set of isolated nodes in G(p) and Siso the set of remaining nodes.

Let H be the graph obtained by adding a special vertex v to G′(p) and making it adjacent
to all nodes in Siso. Clearly, Siso belongs to a component in H and any component in G′(p)
is contained in a component of H. This implies that G′(p) has a giant component only if H
has one. Now, we will prove the first part of Statement (b).
Claim 2. H has components of size o(n) if pdavg = o

(
1/ log2 n

)
and ε ≤ (1−c)

p .

Proof. Let H[Siso] and H[Siso] be graphs induced by Siso and Siso, respectively, in H. Note
that since Siso is a set of isolated nodes in G(p), H[Siso] is an Erdős-Rényi graph on |Siso|
nodes with edge probability εp

|Siso| = εp
n(1−o(1)) . Since εp < 1− c, it follows that H[Siso] has

components of size O(logn) (see, e.g., Bollobás, 1985). Now we will show that the component
containing Siso is of size o(n) a.a.s., thus completing the proof.

Let N(Siso) denote the size of the neighborhood of Siso in H. The probability that a
node in Siso is a neighbor of Siso is at most |Siso|εp

n . Therefore,

E
[
N(Siso)

]
≤ |Siso| ×

|Siso|εp
n

≤ |Siso|εp.
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Applying a version of Chernoff bound (Chung & Lu, 2002), we have the following:

P
(
N(Siso)− E

[
N(Siso)

]
> α

)
≤ exp

− α2

2
(
E
[
N(Siso)

]
+ α/3

)
.

We have two regimes to consider: (i) |Siso|εp = ω(1) and (ii) |Siso|εp = O(1). If |Siso|εp =
ω(1), setting α = |Siso|εp, it follows that N(Siso) ≤ 2|Siso|εp a.a.s. Since H[Siso] has
components of size O(logn), the size of the component containing Siso is

O
(
|Siso|+N(Siso) logn

)
= O

(
|Siso|+ |Siso|εp logn

)
= O

(
n
√
pdavg(1 + εp logn)

)
.

The last expression follows from Claim 1. Since ε ≤ (1 − c)εt and pdavg = o
(
1/ log2 n

)
, it

follows that n
√
pdavgεp logn ≤ n

√
pdavg logn(1 − c) = o(n). Now we consider regime (ii):

|Siso|εp = O(1). By setting α = logn, the component size is O
(

log2 n
)

= o(n). Hence, we
have proved the claim. �

The proofs of the second part of Statement (b) and Statement (c) are straightforward.
Let Rp denote the random subgraph of the perturbation network Ru(ε) obtained by sampling
its edges with probability p. It is easy to see that Rp is an Erdős-Rényi graph with edge
probability εp

n = 1+c
n which implies that it has a giant component (Bollobás, 1985). This in

turn implies that G′(p) has a giant component. Hence, we have proved the theorem.

Theorem 1 indicates that for a large class of networks, the closer we operate to pc,
the more sensitive the dynamics is to structural perturbation. This is indeed true if the
conditions of Statement (b) are met: for any p1 < p2 < pc, εt(p1) > εt(p2). It implies that
greater perturbation is required in the case of p1 (compared to p2) to observe a significant
difference in the expected infection size after perturbation. We have observed the same in
our experiments; see the last three columns of Table 1. In the AstroPh graph, for example,
at p = 0.03, phase transition occurs for εt = 8 while for p = 0.02, εt has to be greater than
20 for a transition to occur.

4. Analyzing the Sensitivity of the LT Model

We now analyze the impact of edge perturbations on the LT model on a graph G = (V,E).
As in the previous section, we restrict our attention to the uniform edge addition model.
Recall that in the specific version of the LT model we consider here, we set bv,w = 1/ deg(v)
for each node v ∈ V and w ∈ N(v).

The fixed points and the number of infected nodes can be studied through an elegant
random graph model (Kempe et al., 2003) which we describe here. Construct a random
directed graph HLT = (V,E′) in the following manner: for each node v ∈ V , a neighbor w is
chosen with probability bv,w and a directed edge is added from w to v. Figure 1 illustrates a
graph G and an instance of HLT . Note that even though G is undirected, HLT is a directed
graph. For a set S ⊂ V , let σ(S,HLT ) denote the number of nodes reachable from S in HLT

(including those in S). Then, σ(S), the expected number of infections with a starting set S,
satisfies σ(S) =

∑
HLT

Pr[HLT ]σ(S,HLT ) (Kempe et al., 2003). We use this characterization
to analyze the impact of edge perturbations.
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Figure 1: A graph (on the left) and an instance of the random graph HLT (on the right)
corresponding to the LT model. For the component T induced by {1, 2, 3, 4, 5}, 1 is chosen
as the root and as a result, T0 = {1}, T1 = {3}, T2 = {2, 5} and T3 = {4}.

The random graph HLT constructed by the above process has the following structure: in
each connected component T of HLT , every vertex has one incoming edge and therefore,
there exists exactly one directed cycle. If we choose a vertex in the cycle as the root r and
remove its incoming edge, then, T corresponds to a tree rooted at r with all edges oriented
away from r. T can be partitioned into sets T0, . . . , Tk such that for each i > 0, a vertex
v ∈ Ti has an incoming edge from some vertex u ∈ Ti−1. The set T0 is a singleton consisting
of the root vertex r. The incoming edge for r is from some neighbor in ∪ki=1Ti. This is
illustrated in Figure 1. First, we will show the following:

Lemma 4.1. In the LT model, let δ = minv∈V,w∈N(v) bv,w. Each component in the random
subgraph HLT has depth O

(
1
δ logn

)
with probability at least 1− 1

n3 .

Proof. Consider a component T in HLT , which is partitioned into sets T0, . . . , Tk, as men-
tioned above. For any i = 1, . . . , k − 1, a vertex v ∈ Ti would become a root if it chooses
an incoming edge from one of its descendants. The probability of this event is at least
minw∈N(v) bv,w ≥ δ. Therefore, the probability that none of the vertices in Ti becomes a
root is at most 1− δ, which in turn implies that the probability that none of the vertices in
Ti, for i = 1, . . . , k − 1 becomes a root is at most (1 − δ)k−1. Hence, the probability that
T has depth more than k = 4 · 1

δ logn+ 1 is at most
∑n
k≥4· 1

δ
logn+1(1− δ)k−1 ≤ 1

n4 . Since
there are at most n such components in HLT , the probability that any of these has depth
more than O

(
1
δ logn

)
is at most 1

n3 .

Consider a vertex v contained in a component T . Let n(v, T ) denote the number of
vertices reachable from v in T . Then, the number of infections resulting from v is the expected
value of n(v, T ), averaged over all random subgraphs HLT and components containing v. Let
A(T ) = 1

|T |
∑
v∈T n(v, T ). Conditioned on a random subgraph HLT , the average number of

infections starting at a random source is
∑
T∈HLT A(T ) |T |n . The average number of infections

starting at a random source is
∑
HLT

Pr[HLT ]
∑
T∈HLT A(T ) |T |n .

Lemma 4.2. For each component T in a random subgraph HLT , A(T ) ≤ 2d, where d is the
depth of T .
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Proof. Define T̂ to be the tree obtained by removing the incoming edge for the root in T .
As described above, T̂ is an out-tree. For each v ∈ T̂ , we define n(v, T̂ ) as the number of
vertices reachable from v in T̂ — this corresponds to the size of the subtree rooted at v in
T̂ . We define A(T̂ ) = 1

|T̂ |
∑
v∈T̂ n(v, T̂ ), and prove that A(T̂ ) ≤ d by induction on the depth

of the out-tree. The base case is a leaf node u, for which A(u) = 1.
Let r be the root of T̂ . Suppose it has children v1, . . . , va. Let T̂i be the subtree rooted at

vi, and let ni be the number of vertices in T̂i. By induction, A(T̂i) = 1
ni

∑
v∈T̂i n(v, T̂i) ≤ d−1.

A(T̂ ) = 1
|T̂ |

∑
v∈T̂

n(v, T̂ )

= 1
|T̂ |

n(r, T̂ ) +
a∑
i=1

1
|T̂ |

∑
v∈T̂i

n(v, T̂i)

= 1 +
a∑
i=1

ni

|T̂ |
A(T̂i) ≤ 1 +

a∑
i=1

ni

|T̂ |
(d− 1)

≤ 1 + |T̂ | − 1
|T̂ |

(d− 1) ≤ d

The third equality follows because n(r, T̂ ) = |T̂ |, and by definition, A(T̂i) = 1
ni

∑
v∈T̂i n(v, T̂i).

The first inequality follows by the induction hypothesis, since the depth of each T̂i ≤ d− 1.
The second inequality follows because

∑a
i=1 ni = |T̂ | − 1.

Next, we consider A(T ). We recall that T is a tree with a cycle of length at most d. Let
the cycle consist of vertices u0 = r, u1, . . . , ub, with b ≤ d− 1. For each ui, n(ui, T ) = |T |,
since there is a path from ui to r. For every other vertex u 6= ui in T , n(u, T ) = n(u, T̂ ).
This implies that A(T ) ≤ d|T |

|T | +A(T̂ ) ≤ 2d.

Finally, we bound the number of infections in the perturbed graph below.

Theorem 2. Let G(V,E) be a graph with maximum degree ∆ and G+Ru(ε) be the perturbed
graph obtained by adding edges uniformly at random with factor ε. For the LT model where
bv,w = 1/ deg(v) for each node v ∈ V and w ∈ N(v), the expected number of infected
vertices starting with an initial random seed set of size s in the perturbed graph G+Ru(ε) is
O(s(∆ + ε+ logn) logn).

Proof. By a direct application of the Chernoff bound, it can be shown that with probability
at least 1 − 1

n3 , the maximum degree of G′ = G + Ru(ε) is at most ∆ + ε + c · logn for a
constant c with the remaining probability of 1

n3 , the maximum degree is O(n). We consider
the random graph process to generate a subgraph HLT of G′. Since bv,w = 1/deg(v) for
each node v ∈ V and w ∈ N(v), for this model, the value of δ of Lemma 4.1 is 1/∆(G′)
and therefore, each component in HLT has depth at most O((∆ + ε + logn) logn), with
probability at least 1 − 1

n3 . Conditioned on HLT satisfying this bound on the depth,
A(T ) = O((∆ + ε+ logn) logn) for all T ∈ HLT . If HLT does not satisfy the depth bound,
A(T ) = O(n) for all T ∈ HLT . Therefore, the expected number of infections for a single
random seed is O((∆ + ε + logn) logn) + O( n

n3 ) = O((∆ + ε + logn) logn). The result
extends to s > 1 by submodularity of the expected number of infections.
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Theorem 2 implies that the LT model with uniform edge weights is in general very robust
to perturbation. Note that the final part of the proof of Theorem 2 is essentially based on
the maximum degree of G′. Replacing G′ with G and retracing the steps, one can show that
the expected spread in the unperturbed graph G is O(s∆ logn), where ∆ is its maximum
degree. Hence, we see that for a reasonably high value of ∆ (say Ω(logn)), the difference
between the total number of infections in G and G′ is at most a linear function of ε and
therefore there is no abrupt change in the outcome. Moreover, the bound suggests that
the higher the ∆, the lower the effect of perturbation. However, making this formal would
require obtaining good lower bounds on the expected number of infections, which we leave
as an interesting research question.

5. Experimental Results

We study the sensitivity to edge perturbations on twenty diverse real-world networks (Leskovec,
2011) with varying degrees of perturbation and other factors for both IC and LT models.
They are listed in Table 1 along with some of their properties, the first four of which
are number of nodes, average degree, maximum eigenvalue, and maximum degree. Other
properties will be discussed subsequently. We present representative results for selected
networks, with other networks exhibiting the same behavior unless stated otherwise. We
focus primarily on the sensitivity of expected number of infections and transient behavior
to edge perturbation. Of course, all of our observations are restricted to the conditions for
which the experiments were performed.

5.1 Experimental Setup and Methodology

Each network G in Table 1 was perturbed with values of ε ranging from 0 to 100, where
ε = 0 corresponds to the unperturbed network. For each ε, we generated ten graph instances
G′ = G+R or G⊕R. Here, R may be Ru or Rd, depending on whether the perturbation
is a uniform edge approach or a degree-assortative approach. For each graph instance, we
performed a simulation run, which consists of 100 separate diffusion instances. A diffusion
instance is the process of setting all node states initially to zero, assigning relevant properties
to graph entities (e.g., transmission probability on edges for the IC model and edge weights
and node thresholds for the LT model), selecting a seed node set S whose element states
are changed to 1 (i.e., are initially infected), and marching time forward in discrete units,
continuing the simulation until a fixed point is reached. We record each node’s time of
infection in each diffusion instance. Thus, for example, the experimental data displayed as
average and variance quantities are based on 1000 values.

5.2 Edge Additions vs. Deletions

We find that perturbations involving both edge additions and deletions do not alter the
results by much, compared to perturbations involving just edge additions. This is due to
the sparsity of the graphs considered. For example, for uniform perturbations, the expected
number of edges deleted is |E|ε/n = εdavg/2 while the expected number of edges modified is
εn/2. Therefore, the remainder of the paper focuses on perturbation by addition of edges
only; i.e., only graphs of the form G′ = G+R.
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Network n = |V | davg λ ∆ ≈ pc (p; εt) pairs by experiments

Synthetic graphs

Random-Regular-20 10000 20.0 20.0 20 0.05 0.04;9 0.03;>10 0.02;>20

Autonomous Systems

AS-2000-01-02 6474 3.88 46.31 1458 0.2 0.15;2 0.1;5 0.05;>10
Oregon1-01-03-31 10670 4.12 58.72 2312 0.2 0.15;<2 0.1;5 0.05;10
Oregon2-01-03-31 10900 5.72 70.74 2343 0.2 0.15;<1 0.1;5 0.05;10

Co-authorship

AstroPh 17903 22.0 94.42 504 0.04 0.03;8 0.02;>20 0.01;>40
CondMat 21363 8.54 37.88 279 0.12 0.1;2 0.08;4 0.06;8
Grqc 4158 6.45 45.61 81 0.2 0.15;<2 0.1;5 0.05;10
HepPh 11204 20.99 244.93 491 0.1 0.07;<2 0.04;8 0.01;>20
HepTh 8638 5.74 31.03 65 0.2 0.15;<1 0.1;5 0.05;10

Citation

HepPh 34546 24.46 76.58 846 0.04 0.03;6 0.02;>20 0.01;>40
HepTh 27770 25.37 111.25 2468 0.05 0.04;<2 0.03;8 0.02;>40

Communication

Email-Enron 33696 10.02 118.41 1383 0.1 0.07;4 0.04;10 0.01;>20
Email-EuAll 265214 2.74 102.53 7636 0.3 0.2;<2 0.1;6 0.05;10

Social

Epinion 75877 10.69 184.17 3044 0.15 0.12;<1 0.1;2 0.08;4
Slashdot0811 77360 12.12 131.34 2539 0.1 0.07;3 0.04;9 0.01;>20
Slashdot0902 82168 12.27 134.62 2552 0.1 0.07;3 0.04;9 0.01;>20
Twitter 22405 5.34 54.08 888 0.2 0.15;<2 0.1;4 0.05;10
Wiki-Vote 7066 28.51 138.15 1065 0.04 0.03;3 0.02;10 0.01;>20

Internet peer-to-peer

Gnutella04 10876 7.35 15.7 103 0.125 0.1;2 0.07;7 0.04;>10
Gnutella24 26518 4.93 19.06 355 0.2 0.15;1 0.1;6 0.05;>10

Table 1: Some relevant properties of the networks used in our simulations and results from
experiments.

5.3 The Independent Cascade Model

We have experimental results for both uniform and degree-assortative perturbation, about
which we make observations relating to the theoretical results and about the behavior of the
networks in general.

5.3.1 Uniform Perturbation

Effect of εp on final infection size. Figure 2 consists of plots of variation in the average
and variance of the fraction of infected nodes with (i) the transmission probability p for
various levels of perturbation and (ii) the perturbation level ε for various p values for three
networks. The plots for the remaining networks are in the full version (Adiga, Kuhlman,
Mortveit, & Vullikanti, 2014). We note that when εp > 1 (and p ≥ pc), the average infection
size is generally high, agreeing with Statement (c) of Theorem 1. We observe that in all the
plots the final fraction of infections is at least 0.5 when εp > 1.
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Figure 2: Uniform perturbation (IC model): Average and variance of fraction of infections
for a single random seed (i) vs. transmission probability p for various ε values and (ii) vs. ε
for various values of p. The plots in the first and third rows are average final fraction of
infected nodes and those in the second row are average variance in final fraction of infected
nodes. The remaining plots are in the full version (Adiga et al., 2014).

The sensitivity of final infection size with ε is modulated by davg. We first consider
the relationship between pc and davg of the unperturbed networks. Since for finite networks,
there is no clear definition of pc, we chose it to be that value of p for which the average total
number of infections is 10% of the number of nodes in the network. Table 1 contains pc for
each network. The dependence of pc on davg is shown in Figure 3 where each data point
corresponds to one graph and is colored according to the type of graph. Clearly, the plot
is indicating an inverse relationship between the two values. This implies that the higher
the davg, the lower the p for which the spread is small. Note that Theorem 1 shows that the
minimum ε for which there is a large spread is inversely proportional to p. This strongly
suggests that the greater the edge density, the greater the perturbation required to achieve
significant change in dynamics. This is supported by our experiments, too. For example, see
plots for AS-2000-01-02 and Wiki-Vote in the first row of Figure 2. Consider p = 0.2 and
note the change in spread in going from ε = 0 to 10. For Wiki-Vote, it goes from 0.38 to 0.89,
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for a ratio of 2.3. For AS-2000-01-02, it changes from 0.08 to 0.82, for a ratio of 10.3. Thus,
AS-2000-01-02, with a factor of 7 smaller davg than Wiki-Vote, has much greater sensitivity
of spread for changes in ε. Note the numbers of nodes in the two graphs are comparable. We
see this same behavior in other (high davg, low davg) network pairs: (AstroPh, CondMat),
(HepPh, HepTh), and (Email-Enron, Email-EuAll).

0 10 20 30 40
Average Degree

0.0

0.1

0.2

0.3

0.4

0.5

C
ri

ti
ca

l 
P
ro

b
a
b
ili

ty auton.
co-auth.
citation
comm.
social
internet

Figure 3: Dependence of pc on davg. Data are for the graphs in Table 1, and colors correspond
to graph types in the table.

Variance of final infection size. In Figure 2 (and more plots in the full version Adiga
et al., 2014), the middle row of plots contains variance in final infection size as a function
of transmission probability. There are several observations. First, for all graphs whose
dynamics exhibit a phase transition to larger infection sizes with increasing ε for fixed p
(and for increasing p for fixed ε), the variance of the infection size qualitatively increases
with p, peaks in the region of phase transition and again decreases. The peaks in variance
correspond to the regimes where the change in final infected fractions are changing the most
with p, as expected (cf., the first row of figures). Second, the greater the perturbation, the
lesser the range of p values for which the variance is high. This is because the greater the
value of ε, the faster the contagion spreads, thus driving down variance. The last observation
is non-intuitive. That is, the peak of the variance does not seem to vary for combinations
of ε and p where 0 ≤ ε ≤ 10 and 0 ≤ p ≤ 0.6. For these ranges, only the value of p where
the peak occurs decreases with increasing ε. In fact, the peak of the variance is around 0.1
for all graphs for these conditions.

Effect of regular network structure on numbers of infected nodes. There are
several reasons to investigate random networks with uniform degree. First, in an investigation
of voter model dynamics (Kuhlman, Kumar, & Ravi, 2013), it was shown that uniform degree
networks generated results very near to those of realistic graphs whose degree distribution
was exponential decay, but far from those for graphs with scale free degree distributions. So
the question arises here as to how close the behavior of uniform degree networks is to those
of realistic networks. Second, since the perturbing subgraph R in this study is a random
graph, the perturbed graph G′ in some sense maintains its random structure compared to G,
when G is the random 20-regular graph (a random graph where each node has degree 20).
Figure 2 shows that this latter consideration dominates. That is, the upper right plot shows
that the curves are basically shifted left as ε increases. So, too, in the plot at the right of
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the middle row, the variance curves shift slightly left as ε increases, but this effect is much
smaller than in Wiki-Vote or AS-2000-01-02.

Effect of ε on the average time-to-peak number of new infections. The average
time histories for 1000 diffusion instances that comprise each curve for one graph of each
type are provided in the top row of Figure 4. The transmission probabilities used for each
plot are such that p > pc. The average time at which the maximum number of new infections
occurs can decrease, stay the same, or increase as a function of ε, depending on the graph,
moving left to right. Over all graphs of Table 1, there seems to be a fairly even split in
that nine of the graphs show an increase in average time-to-peak with increasing ε and eight
show a decrease in average time-to-peak. The remainder show no change in time-to-peak.
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Figure 4: Sensitivity of temporal characteristics to uniform perturbation (IC model): Plots
of (i) average number of new infections for each time step for selected p values, (ii) average of
maximum number of new infections at any time vs. p. and (iii) variance of maximum number
of new infections at any time vs. p. The remaining plots are in the full version (Adiga et al.,
2014).
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Effect of ε on the average peak number of new infections. The second row of plots
in Figure 4 depicts the average maximum number of new infections at any one time as a
function of transmission probability, for different ε. As ε increases, the maximum number of
new infections increase.

Variance in average maximum number of new infections for any discrete time.
The last row of plots in Figure 4 provides variance in the 1000 experimentally determined
values used to compute the average maximum number of new infections; that is, in the peak
value of each curve in the plots of the top row. For these particular graphs, the variances
are very roughly on the order of 0.01, which is, interestingly, much smaller than those for
the final number of infections in Figure 2.

5.3.2 Degree-Assortative Perturbation

Here, we focus on results that are different from those for uniform perturbation.

Effect of ε and degree-assortativity on average final number of infections and
variance. The first row of plots in Figure 5 shows the average final number of infections,
from 1000 measurements, as a function of p and ε. The ε = 0 curves are the same as
those in Figure 2. By comparison with the top row of plots in that figure, it is clear that
degree-assortativity perturbations significantly reduce the effect of ε on changes in the
average final number of infections. We find, over all networks, that AS-2000-01-02 and
Wiki-Vote provide two bounding cases, i.e., least effect and most effect of degree-assortative
perturbations, respectively. From comparison of the second row of plots in each of Figure 5
and Figure 2, it is also clear that degree-assortative perturbations correspondingly collapse
the variances across ε values for Wiki-Vote, but those for AS-2000-01-02 are less affected.

Effect of perturbation method on average final number of infections. Since the
ε = 0 curves are the same in Figure 2 and Figure 5, when all other factors are the same,
uniform perturbations generate greater numbers of infections than do degree-assortative
perturbations (compare the top rows of plots in the two figures).

Effect of network structure for degree-assortative perturbations. The effects of
degree assortative perturbations appear to be more network-specific than those for uniform
perturbations. This is expected since the perturbation instances inherit some of the network
properties.

Effect of degree-assortative perturbations on the random regular graph. The
effects of the two perturbation methods on the random regular graphs are the same because
of the uniform node degrees.

5.4 Linear Threshold Model

We have results for the effect of uniform perturbation in the LT model. Figure 6 shows the
plots of average number of infections vs. ε for three representative networks for different
seed probabilities s. The remaining plots are in the full version (Adiga et al., 2014). In each
diffusion instance, the seed set was constructed by sampling the vertex set uniformly with
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Figure 5: Degree-assortative perturbation (IC model): Average and variance of fraction of
infections for a single random seed vs. transmission probability p for various ε values. The
remaining plots are in the full version (Adiga et al., 2014).

probability s, and every node was assigned a threshold chosen uniformly at random in the
interval [0, 1].

Recall from Theorem 2 that the spread is bounded by a linear function of ε. From
Figure 6, we observe that the model is generally robust to perturbation and the spread is a
linear or sublinear function of ε depending on the seed probability s. In particular, when the
seed probability is low (s = 0.0001 for example), there is hardly any change in the average
spread. Note that in the plots, ε ranges from 0 all the way up to 100 which is an extreme
value for perturbation considering the sizes of the networks. However, for larger values
of s, especially when it is comparable to the maximum degree ∆, the effect of ε is more
pronounced, even for low values of ε. This observation is worth investigating and could lead
to better bounds for spread than what we have in Theorem 2.

6. Conclusions and Open Problems

We give the first rigorous results on the stability of the independent cascade and linear
threshold models with respect to edge perturbations. We considered two popular noise
models namely, uniform and degree-assortative perturbations, and studied the sensitivity of
the final outbreak size and temporal characteristics to these perturbations. Our analysis
was supported by experimental observations on 20 diverse real networks. We showed that
the sensitivity of the independent cascade model depends on the transmission probability
and perturbation can lead to abrupt changes in the outcome, while the linear threshold
model with uniform edge weights is in general stable to network perturbations. Also,
our experiments suggest that dynamics are more sensitive to uniform perturbation than
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Figure 6: Uniform perturbation (LT model): Average fraction of infected nodes vs. pertur-
bation ε for various seed probabilities s. The remaining plots are in the full version (Adiga
et al., 2014).

degree-assortative. Extending our results to other models of noise, especially those involving
dependencies, sensitivity to the number of sources, and examining the sensitivity of other
dynamical properties in more general diffusion models (including the IC and LT models
with heterogeneous probabilities or weights) are natural open problems for future research.
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