
Inferring Users’ Choice Functions in Networked

Social Systems Through Active Queries

Abhijin Adiga, Chris J. Kuhlman, Madhav V. Marathe, S. S. Ravi,

Daniel J. Rosenkrantz and Richard E. Stearns

Abstract

Using synchronous dynamical systems (SyDSs) as a formal model for networked
social systems, we study the problem of inferring users’ choices in such systems.
We observe that SyDSs with deterministic and probabilistic threshold functions as
local functions can capture users’ choices in the context of contagion propagation in
social networks. We use an active query mechanism where a user interacts with a
system by submitting queries, and the responses to the queries are used to infer the
local functions. We develop methods that provide provably efficient query sets for
inferring both deterministic and probabilistic forms of threshold functions. We also
present experimental results using real world social networks.

1 Introduction

1.1 Motivation

Inferring unknown parameters of systems is currently an active area of research (see, e.g.,
[1, 6, 7, 12, 17, 28, 30]). In this paper, we study the problem of inferring the behaviors of
users in networked social systems. Using a discrete dynamical system [5, 22] as the formal
model of a networked system, we observe that in several contexts, behaviors that represent
users’ choices can be captured by classes of threshold functions. Thus, in such contexts,
the problem of learning users’ behaviors can be formally cast as that of learning the local
threshold functions of discrete dynamical systems.

One approach for the inference of user behavior is based on observing a system (e.g.,
[1, 12, 23]) while another approach uses active interaction with the system in the form of
queries (e.g., [2, 6, 17]). We focus on the latter approach and consider two versions of
threshold functions, namely Granovetter-style deterministic thresholds [14] and probabilistic
thresholds [4], to represent users’ behaviors. We also consider symmetric functions (defined
in Section 2) which properly contain threshold functions. Threshold models have been
used by many researchers in the context of contagion propagation in social networks (e.g.,
[1,7,12]). Granovetter-style threshold functions capture simple deterministic choices by the
entities comprising the social network. Here, if a node v’s threshold is tv, then v chooses
to change its state from 0 to 1 during a time step τ if at least tv of v’s neighbors are in
state 1 at time step τ − 1. This type of threshold behavior has been used to study several
types of social behaviors such as initiation or cessation of smoking, joining or leaving a
protest movement, spreading of Twitter hashtags, group coordination, joining an online
health forum, and rare outbreaks [8, 12, 18, 24, 25, 27, 29]. Probabilistic threshold functions
represent a more general form of social choice by including an additional degree of freedom
(namely, a probability value) over and above the threshold value. In one example of this
class of functions, each node v is associated with two parameters, namely, a threshold value
tv and a probability value pv. If the number of neighbors of v in state 1 is less than tv,
the next state of v is 0. However, when the number of neighbors of v in state 1 is at least
tv, the next state of v is 1 with probability pv and 0 with probability 1 − pv. Note that
when pv = 1, the probabilistic model coincides with the deterministic threshold model. The

1

probabilistic threshold model has been used to capture the propagation of epidemics and
other social phenomena in populations [3, 4, 10, 20]. Additional application contexts where
threshold models have been used will be presented in the related work section.

To discuss our contributions, we first need to present an informal description of a syn-
chronous dynamical system (SyDS); a formal description appears in Section 2. A SyDS is
specified by an underlying undirected graph G(V,E), where |V | = n. Each node v ∈ V has
a state value from {0, 1} which changes over time. Each node v also has a local function
fv. The inputs to fv are the current state of v and those of its neighbors, and the output
of fv is the next state of v. The configuration C of a system at time τ is the n-tuple where
the ith component of C represents the state of node vi at time τ , 1 ≤ i ≤ n. Given a
configuration C at time τ , the successor C is the configuration1 of the system at time τ +1.
In our formulations, we assume that the underlying network of the SyDS is given and that
the local function at each node is a form of threshold function. A query q to the system
specifies a configuration and the response to the query is the successor of q. We can now
provide an informal description of the inference problem: given the underlying network of a
threshold SyDS and the model for its local functions, query the system and determine the
local function at each node from the responses produced by the system for the queries. An
additional goal is to use as few queries as possible. We consider two query models, namely
batch (where all the queries must be submitted in one group) and adaptive (where the
responses received for some queries can be used in constructing new queries).

This work is part of an ongoing project to define and demonstrate next-generation social
science principles. Among the goals of the project are to develop scalable, formal, and
rigorous methods for reproducible and transparent social science. The results in this paper
take concrete steps to realize these goals in that formal methods are provided and evaluated
for inferring properties of networked social systems. By learning properties of such systems,
a more rigorous and transparent understanding of these types of user choice models and
user behaviors can be gained.

1.2 Summary of Contributions

We use n to denote the number of nodes in the given SyDS and ∆ to denote the maximum
node degree of the underlying graph.

1. For SyDSs with symmetric local functions, we show that under the batch model, there
exists a query set Q of size O

(
∆(log ∆)2.5

)
such that from the responses to the queries

in Q, the symmetric function at each node can be correctly identified. We establish this
upper bound through a probabilistic argument that uses a result of Füredi and Kahn [11].
on hypergraphs. Our upper bound provides an asymptotic improvement over a result
in [2] where it is shown that for SyDSs with symmetric local functions, there is a query
set of size O(∆1.5 log n) which can be used to correctly identify all the local functions
with probability at least 1− 1

n .

2. For any integer n ≥ 1, We show that there are SyDSs with N ≥ n nodes where each
local function is a threshold function such that for such SyDSs, there are query sets of
size Ω(2N) from which one cannot correctly infer all the threshold values. (Note that
for a deterministic SyDS with N nodes, the maximum number of possible queries, which
is equal to the number of distinct configurations, is 2N .) Thus, generating queries by
naively sampling over the set of all configurations is not a good strategy to produce
“small” query sets that can identify all the threshold values.

1When the system is deterministic, the successor of a configuration is unique. However, for probabilistic
systems, the successor is, in general, not unique.

2

3. We present a randomized algorithm that generates query sets to infer probabilistic thresh-
old functions. We show that our algorithm provides good performance guarantees on the
threshold as well as the probability values.

4. We present experimental results obtained by implementing our algorithm mentioned in
Item 3 above on real world networks. We address four topics. First, we show how the
algorithm makes progress toward estimating thresholds by converging on true thresholds.
Second, we describe the value and penalty associated with repeating queries that are
necessary for stochastic local functions. Third, we show how the maximum number of
queries required to estimate thresholds tends toward the mean number of queries as the
transition probability and number of query repetitions increase. Fourth, we compare
the number of queries required for estimating thresholds for stochastic and deterministic
local functions.

1.3 Related Work

As mentioned earlier, the problem of learning the parameters of unknown systems has
attracted a lot of attention in the literature. We first discuss the work where inference is
done by observing a system. For example, the problem of learning finite automata and
normal forms of Boolean functions are studied in [23] and [16] respectively. For social
networks, Gonzalez-Bailon et al. [12] present techniques for learning thresholds of nodes
in a Twitter network using data from retweets. Algorithms for learning thresholds of a
dynamical system using information about the system’s trajectories are presented in [1].
Also, several researchers (e.g., [13, 26]) have addressed the problem of learning influence
probabilities in social networks from observed data such as system logs and timed traces.
In contrast to inference from passive observations, a number of researchers have recently
studied the use of active interactions with a system in learning the system’s parameters.
For example, Bei et al. [6] discuss methods for a seller to learn utility functions of buyers
in a market by announcing prices of items and obtaining a set of goods that each buyer
is willing to procure. Urschel et al. [28] present algorithms for inferring parameters of
certain probabilistic processes (called determinantal point processes) through an appropriate
sampling procedure. Zhou et al. [30] show how one can use queries to learn Nash equilibria in
two-player games where the probability distributions used by players in choosing strategies
are unknown. The use of queries to learn users’ choices from a finite set of ranked options
is studied in [15, 17]. The use of active queries to infer the local functions of a SyDS
was introduced in [2]. That paper presented methods for generating query sets for SyDSs
where the local functions are either deterministic threshold functions or symmetric functions.
Probabilistic threshold functions were not considered in [2].

2 Preliminaries

2.1 Synchronous Dynamical Systems

We follow the presentation in [1] to discuss the basic definitions associated with discrete
dynamical systems. Let B denote the Boolean domain {0,1}. A Synchronous Dynamical
System (SyDS) S over B is specified as a pair S = (G,F), where (a) G(V,E), an undirected
graph with |V | = n, represents the underlying graph of the SyDS, with node set V and edge
set E, and (b) F = {f1, f2, . . . , fn} is a collection of functions in the system, with fi
denoting the local function associated with node vi, 1 ≤ i ≤ n. Each node of G has a
state value from B. Each function fi specifies the local interaction between node vi and its
neighbors in G. The inputs to function fi are the state of vi and those of the neighbors of vi

3

in G; function fi maps each combination of inputs to a value in B. This value becomes the
next state of node vi. It is assumed that each local function can be computed efficiently.

At any time τ , the configuration C of a SyDS is the n-vector (sτ1 , s
τ
2 , . . . , s

τ
n), where

sτi ∈ B is the state of node vi at time τ (1 ≤ i ≤ n). In a SyDS, all nodes compute and
update their next state synchronously. Other update disciplines (e.g., sequential updates)
have also been considered in the literature (e.g., [22]). If a given SyDS can transition in one
step from a configuration C′ to a configuration C, then C is a successor of C′.

Given a graph G(V,E) and a node vi ∈ V , the closed neighborhood of vi, denoted
by N [vi], is defined by N [vi] = {vi} ∪ {vj : {vi, vj} ∈ E}. Thus, the inputs to the
local function fi at vi are the states of the nodes in N [vi]. For any node v, the score of v,
score(v, q) in the current configuration of the SyDS q is the number of nodes in N [v] whose
current state value is 1. Thus, the score of v in a configuration C gives the number of 1’s
in the input to the local interaction function fv when C is the current configuration of the
SyDS.

2.2 Local Interaction Functions

We consider three classes of local interaction functions (or simply local functions).

(a) Threshold Functions. The local function fv associated with node v of a SyDS S is
a tv-threshold function for some integer tv ≥ 0 if the following condition holds: the value
of fv is 1 if v’s score in the current configuration is at least tv; otherwise, the value of the
function is 0. Letting dv denote the degree of node v, the number of inputs to the function
fv is dv + 1. Thus, we assume that 0 ≤ tv ≤ dv + 2. (The threshold values 0 and dv + 2
allow us to realize local functions that always output 1 and 0 respectively.)

(b) Symmetric Functions. The local function fv associated with node v of a SyDS S is
symmetric if the value of fv depends only on the score of v [9]. It is easy to see that each
threshold function is also a symmetric function.

(c) Probabilistic Threshold Functions. Here, each node v is associated with with
two parameters, namely a threshold tv and a probability pv. The local function fv is
defined as follows. Let σv denote v’s score in the current configuration. If σv < tv, the
output of fv is 0; otherwise (i.e., σv ≥ tv), the output of fv is 1 with probability pv and
0 with probability 1 − pv. The nodes are assumed to make choices independently of each
other. Probabilistic threshold functions generalize the class of threshold functions since
when pv = 1, a probabilistic threshold function coincides with the corresponding threshold
function.

When each local function is a threshold function, the corresponding SyDS is determin-
istic; thus, each configuration has exactly one successor. However, when one or more local
functions are probabilistic threshold functions, the transition from one configuration to an-
other is stochastic; thus, a configuration may have two or more successors.An example of a
SyDS with deterministic and probabilistic threshold functions is given in the appendix.

2.3 Query Model

Our focus is on determining the local functions of a SyDS by actively interacting with the
system. This interaction is in the form of queries to the system. Each query q specifies
a system configuration. When the system is deterministic, the output for query q is the
successor of q. When the system is stochastic, the system may return any successor of q. As
in [2], we consider two modes of interaction, namely the batch mode (where all the queries
must be submitted together) and adaptive mode (where a new query may be constructed
using the responses to the previous queries).

4

We say that a query set Q is complete if for every node v and every integer j ∈
[0 .. dv + 1], there is a query q ∈ Q such that score(v, q) = j. It can be seen that for SyDSs
where each local function is a (deterministic) threshold function, all the threshold values
can be correctly identified from the responses to the queries in any complete query set. We
use 0 (1) to denote the query in which the state of each node is 0 (1).

2.4 Other Graph Theoretic Concepts

Given an undirected graph G(V,E) and a pair of nodes u and v, the distance between u
and v, denoted by δG(u, v), is the length of a shortest path (in terms of edges) between
u and v in G. We assume that for any node u, δG(u, u) = 0. The square of G, denoted
by G2(V,E′), is defined as follows: for any pair of nodes u and v, G2 has the edge {u, v}
iff δG(u, v) ≤ 2. The closed distance-2 neighborhood of a node v in G, denoted by
N [v,G2], is defined by N [v,G2] = {u : δG(u, v) ≤ 2}.

A hypergraph H(VH , EH) consists of a node set VH and a hyperedge set EH . Each
hyperedge h ∈ EH is a nonempty subset of VH . Any graph can be regarded as a hypergraph
in which each hyperedge has exactly two elements. We will use hypergraphs in proving the
results in Section 3.

3 Complete Query Sets for Symmetric Functions

In this section, we show an upper bound of O(∆(log ∆)2.5) on the size of complete query
sets under the batch mode for SyDSs with symmetric local functions. As mentioned in
Section 1.2, this is an asymptotic improvement over the upper bound established in [2].

We begin with a number theoretic definition. Given a positive real number x, we use
〈x〉 to denote the integer obtained by rounding x to the nearest integer; that is, 〈x〉 = bxc if
the fractional part of x is less than 0.5; otherwise, 〈x〉 = dxe. We use the following technical
lemma whose proof appears in the appendix.

Lemma 3.1. Let b, d and D be positive integers such that b ≤ d ≤ D and let z =
〈
bD
d

〉
.

Then,
(
d
b

)(
z
D

)b(
1− z

D

)d−b ≥ 1
11
√
d+1

.

Our next lemma provides an important intermediate result regarding query sets. This
lemma is a key ingredient in our proof of the main result of this section (Theorem 3.5).
To state this lemma, we need to introduce some notation. Suppose G(V,E) is a graph and
V ′ ⊆ V . We use N [v, V ′] to denote the closed neighborhood of v restricted to V ′; that is,
N [v, V ′] = N [v] ∩ V ′.
Lemma 3.2. Let G(V,E) be the underlying graph of a SyDS with symmetric local func-
tions. Let V ′ ⊆ V such that ∀v ∈ V , |N [v, V ′]| ≤ `. Then, there exists a set Q with
at most 22`3/2 log |V ′| + 2 queries such that (i) ∀v ∈ V \ V ′ and q ∈ Q, q(v) = 0 and
(ii) ∀v ∈ V and every i ∈ {0, 1, . . . , |N [v, V ′]|}, there exists q ∈ Q such that score(v, q) = i.

Proof. The all zeros query 0 is such that ∀v ∈ V , score(v,0) = 0. The configuration q
with all vertices of V ′ in state 1 yields ∀v ∈ V , score(v, q) = |N [v, V ′]|. These two queries
account for the additive term of 2. Let D(p, V ′) be the distribution where each q ∼ D(p, V ′)
is constructed as follows: ∀v ∈ V ′, Pr(q(v) = 1) = p and ∀v ∈ V \ V ′, q(v) = 0. Let Q ={
qij ∼ D

(
i
` , V

′) | 1 ≤ i < `, 1 ≤ j ≤ 22`
√
`+ 1 log |V ′|,

}
. Let d′[v] = |N [v, V ′]|. For

any b ∈ {1, . . . , d′[v]} and q ∼ D
(
z, V ′

)
, where z =

〈
b`
d′[v]

〉
,

Pr
(
score(v, q) = b

)
≥
(
d′[v]

b

)(
z

`

)b(
1− z

`

)d′[v]−b

≥ 1

11
√
d′[v] + 1

≥ 1

11
√
`+ 1

, (1)

5

where the second inequality follows from Lemma 3.1.

Pr
(
score(v, q) 6= b for any q ∈ Q

)
≤ Pr

(
score(v, qzj) 6= b, 1 ≤ j ≤ 22`

√
`+ 1 log |V ′|

)
≤
(

1− 1

11
√
`+ 1

)22`
√
`+1 log |V ′|

< e−2` log |V ′| .

Since for every v, |N [v, V ′]| ≤ `, the number of distinct closed neighborhoods restricted

to V ′ is at most
∑`
i=1

(|V ′|
i

)
≤
(e|V ′|

`

)`
. Note that if ∃v ∈ V and b ∈ {1, . . . , `} such

that score(v, q) 6= q for any q ∈ Q, then there is a subset of V ′ of size ≤ ` for which in no
query, b vertices are in state 1. Therefore, using union bound,

Pr
(
∃v ∈ V, b ∈ {1, . . . , `} such that score(v, q) 6= b, ∀q ∈ Q

)
≤
(
e|V ′|
`

)`
e−2` log |V ′| < 1 .

Hence, there exists a query set of size at most |Q| = (` − 1) × 22
√
`+ 1 log |V ′| + 2 <

22`3/2 log |V ′|+ 2 that satisfies the conditions in the statement of the lemma.

We also use the following two lemmas of Füredi and Kahn [11] based on the Lovász Local
Lemma [21].

Lemma 3.3. Let H(V,EH) be a hypergraph on a set of n elements V such that each
hyperedge has at most b elements and each element belongs to at most b hyperedges,

where b ≥ 500. Then, V can be partitioned into α =
⌈

b
log b

⌉
sets X1, X2, . . . , Xα of V

such that |H ∩Xi| ≤ d4.7 log be for all H ∈ EH.

Lemma 3.4. Let V ′ ⊆ V such that ∀v ∈ V , |N [v, V ′]| ≤ `. Then, V ′ can be partitioned
into k ≤ (`− 1)∆ + 1 sets V ′1 , . . . , V

′
k such that ∀v, |N [v, V ′] ∩ V ′j | ≤ 1 for every block V ′j .

We can now prove the main result of this section.

Theorem 3.5. Let G(V,E) be the underlying graph of a SyDS S with symmetric local
functions. Let ∆ denote the maximum node degree in G. Under the batch mode, there is a
complete query set Q for S with |Q| = O

(
∆(log ∆)2.5

)
.

Proof. It is shown in [2] that for any SyDS with symmetric local functions, there is a
complete query set Q with |Q| ≤ ∆2 + 1. For ∆ ≤ 500, we can choose an appropriate
constant c such that ∆2 < c∆(log ∆)2.5; thus, the theorem holds when ∆ ≤ 500. Therefore,
for the rest of the proof, we will assume that ∆ > 500.

For any graph G, let H be the hypergraph where each hyperedge Hv corresponds to the
closed neighborhood of vertex v. Since the maximum degree is ∆, for all v, |Hv| ≤ ∆ + 1
and v belongs to at most ∆+1 hyperedges. By Lemma 3.3, for any ∆ ≥ 500, the vertices of

G can be partitioned into α ≤
⌈

∆+1
log(∆+1)

⌉
subsets X1, X2, . . . , Xα, such that every vertex is

adjacent to at most ` = d4.7 log(∆ + 1)e vertices in any Xi. For 1 ≤ i ≤ α, let n≤i(v) denote
the number of neighbors of v in

⋃
j≤iXj . The query set Q is structured in the following

manner. It is partitioned into α subsets Q1, Q2, . . . , Qα such that Qi determines fv(b), b =
n≤i−1(v) + 1, . . . , n≤i(v) for each v, where n≤0(v) = 0 by definition. In the remaining part,

we will show that this can be achieved with |Qi| ≤ 22
√

∆ log2 ∆ + 2 for each i.
We will partition each Xi into subsets Xi1, Xi2, . . . , Xik such that every vertex in V

is adjacent to at most one vertex in Xij for any j. Since ∀v ∈ V , |N [v,Xi]| ≤ `, by
setting V ′ = Xi in Lemma 3.4, this can be achieved for k ≤ (`−1)∆+1. Now, we construct

6

an auxiliary graph Ĝ with vertex set V̂ = V ∪{xij | j = 1, . . . , k} where each xij corresponds

to Xij . The edge set Ê contains edges from V to {xij | 1 ≤ j ≤ k} where a vertex v is
adjacent to xij if and only if it has a neighbor in Xij in G. The vertex functions fv(·) remain

the same ∀v ∈ V . Applying Lemma 3.2 to Ĝ with V ′ = {xij | 1 ≤ j ≤ k}, since ∀v ∈ V ,

|N [v,Xi]| ≤ `, we note that there exist at most 22`2
√
` log k+ 2 ≤ 23`2

√
` log(`∆) queries q̂

such that ∀v ∈ V , q̂(v) = 0 and for each b = 0, 1, ..., |N [v,Xi]|, there exists a query q̂ such
that v is adjacent to exactly b vertices in {xij | 1 ≤ j ≤ k}. Let this set of configurations

be denoted by Q̂i.
For each q̂ ∈ Q̂i, we construct a query q ∈ Qi as follows: ∀v ∈ Xj , j < i, we set q(v) = 1,

and ∀v ∈ Xj , j > i, we set q(v) = 0. For v ∈ Xi, q(v) = q̂(Xij), where Xij is the set to
which v belongs. Suppose in a configuration q̂, v ∈ V has b neighbors in state 1. We will now
show that score(v, q) = n≤i−1(v)+b. By definition of q, for any u ∈ Xi, q(u) = 1 if and only
if q̂(Xij) = 1. Since v is adjacent to at most one vertex in Xij for any j, there are exactly b
vertices of N [v,Xi] with state 1 in q. Further, recalling that every vertex with color < i is in
state 1 in q, score(v, q) = n≤i−1(v)+ b. Finally, since for every b = n≤i−1(v)+1, . . . , n≤i(v),

there exists a query q̂ ∈ Q̂ with b neighbors of v in state 1, the proof follows.
Therefore, |Q| ≤ α|Qi| ≤ 2∆

log ∆23`2
√
` log(`∆) < 2500∆(log ∆)2.5, since ` =

4.7 dlog(∆ + 1)e. This completes our proof of Theorem 3.5.

It should be noted that Theorem 3.5 shows the existence of a small complete query set
for SyDSs with symmetric functions. Developing an algorithm that can construct such a
query set is left for future work.

4 Existence of Large Incomplete Query Sets

In this section, we show that even for SyDSs where each local function is a threshold function,
one can construct exponentially large query sets which are incomplete, that is, they cannot
be used to correctly infer all the threshold values. For space reasons, our proof of the
following result appears in the appendix.

Theorem 4.1. For any n ≥ 1, there is a SyDS S with N ≥ n nodes such that (i) each local
function of S is a deterministic threshold function and (ii) under the batch mode, there is
an incomplete query set of size Ω(2N) for S.

We now briefly discuss the significance of Theorem 4.1. For a SyDS with N nodes, the
number of possible configurations, and hence the maximum number of distinct queries is,
2N . Theorem 4.1 points out that one may not get a complete query set even if a constant
fraction of all the possible configurations is included in the query set. This result provides
an indication of the difficulty of finding small complete query sets even when all the local
functions are threshold functions. In particular, the theorem suggests that naive random
sampling schemes are unlikely to produce complete query sets even after generating a large
number of samples. Thus, methods for choosing queries should be carefully designed so that
the resulting query set is both complete and concise. In the next section, we present such
a method for probabilistic threshold functions which are more general than deterministic
threshold functions.

5 Results for the Probabilistic Threshold Model

In this section, we present our algorithm for inferring probabilistic threshold functions. The
inputs to the algorithm are the underlying graph G(V,E), values ε and δ that are used

7

Algorithm 1: InferProbThreshold

Data: G(V,E), ε, δ, pmin, oracle FPT

Result: p̂v and t̂v for each v ∈ V
1 /* Phase I: Infer the threshold value for each v ∈ V . */

2 ∀v ∈ V, tL(v) = 0, tH(v) = d(v) + 2; Vrem = V ;
3 while Vrem 6= ∅ do
4 A = Vrem; q = 0;
5 while A 6= ∅ do
6 vmax = arg maxv∈A(tH(v)− tL(v));

7 A = A \N [vmax, G
2]; /* Remove closed distance-2 neighborhood of vmax. */

8 In q, set the states of nodes in N [vmax] such that

9 score(vmax, q) =
⌈
(tH(vmax) + tL(vmax))/2

⌉
;

10 end

11 Let si = FPT(q) for i = 1, . . . , rt =
⌈

1
pmin

log(2n/δ)
⌉
;

12 ∀v ∈ V, let s(v) = max1≤i≤rt{si(v)};
13 for v ∈ A do
14 if s(v) = 1 and tH(v) > score(v, q) then
15 tH(v) = max

(
tL(v), score(v, q)

)
;

16 else if s(v) = 0 and tL(v) ≤ score(v, q) then
17 tL(v) = min

(
tH(v), score(v, q) + 1

)
;

18 end

19 ∀v ∈ Vrem such that tH(v) = tL(v), remove v from Vrem.

20 end

21 t̂(v) = tL(v); /* or tH(v)*/

22 /* Phase II: Estimate the probability for each v ∈ V . */
23 q = 1;

24 Let si = FPT(q) for i = 1, . . . , rp =
⌈

3
ε2pmin

log(2n/δ)
⌉
;

25 ∀v ∈ V, p̂v =

[
rp∑
i=1

si(v)

]
/rp;

to specify the performance guarantees of the algorithm and a value pmin such that each
probability value to be estimated is at least pmin. The algorithm assumes the availability of
an oracle FPT which returns a successor of a given query q. The outputs of the algorithm
are the estimates for the threshold and probability value for each node.

The algorithm operates in two phases. In Phase I, it uses the adaptive query mode along
with a binary search procedure to successively reduce the range of the threshold value for
each node. Since the system is stochastic, queries are repeated an appropriate number of
times to meet the required performance guarantees. In Phase II, estimates for the probability
values of nodes are obtained by simply repeating the query in which every entry is 1 and
computing the number of times a node’s state changes to 1 in the successor. The details
are provided in Algorithm 1. We now establish the performance guarantees provided by the
algorithm.

Theorem 5.1. Let G(V,E) be the underlying graph of a SyDS where each local function is
a probabilistic threshold function. Let FPT be the oracle corresponding to the probabilistic
threshold model defined over G with probability p(v) and threshold t(v) for each vertex v.
Let |Q| be the number of distinct queries generated by Algorithm 1 for the particular case

8

of p(v) = 1, ∀v ∈ V . Let ε, δ, pmin ∈ (0, 1) be given values. Algorithm 1 infers the proba-
bilistic threshold model corresponding to FPT using at most 1

pmin
log
(

2n
δ

)(
|Q|+ 3

ε2

)
queries

with the following guarantees: With probability at least 1 − δ, (i) thresholds of all vertices
are determined and (ii) the probability p(v) for every vertex v is estimated within a factor
of 1± ε, provided p(v) ≥ pmin.

Proof. Since Q is a complete query set when p(v) = 1 (i.e., for the deterministic threshold
case), we note that for every

(
v, t(v)

)
, there exists q ∈ Q such that score(v, q) = t(v). For rt

repetitions of this query, the probability that the estimated threshold is not equal to t(v)
is (1− p(v))rt , the probability that the state of v is 0 for every repetition of query q. Let t̂v
be the inferred threshold. By union bound,

Pr
(
∃v ∈ V such that t̂v = t(v)

)
≤
∑
v∈V

Pr
(
t̂v = t(v)

)
=
∑
v∈V

(1− p(v))rt

≤ n(1− pmin)rt ≤ δ

2
(2)

for rt ≥ 1
pmin

log(2n/δ).

Let xv =
∑rp
i=1 si(v). Recall that p̂v = xv

rp
. Since xv is a sum of rp i.i.d. Bernoulli

random variables with E[xv] = rpp(v), we can apply Chernoff bounds (parts (4a) and (4c)
of Theorem A.1 in the appendix) to get

Pr
(
|p̂v − p(v)| ≥ εp(v)

)
= Pr

(
|xv − rpp(v)| ≥ εrpp(v)

)
≤ 2e−

ε2rpp(v)

3 ≤ 2e−
ε2rppmin

3 .

Again using the union bound,

Pr
(
∃v ∈ V such that |p̂v − p(v)| ≥ εp(v)

)
≤ 2ne−

ε2rppmin
3 ≤ δ

2
(3)

for rp ≥ 3
ε2pmin

log(2n/δ). Combining (2) and (3), we have the guarantees specified in the
theorem.

6 Experimental Results

The purpose of the experiments is to evaluate Algorithm 1 using a set of social networks
given below. After presenting the networks, the experimental procedures are outlined, and
results are presented. Here, we focus on estimated threshold results, and leave probability
estimation for an expanded version of the paper. The quality of the probability estimations
is comparable to that of threshold estimates.

6.1 Experimental Procedures and Parameters

Table 1 lists the networks studied. All are co-authorship networks. For each network, we

Table 1: Networks used in our experiments and their properties [19].

Network Type Num. Nodes Avg. Deg. Max. Deg.

ca-condmat co-author 21,363 8.55 279

ca-grqc co-author 4,158 6.46 81

ca-hepth co-author 8,638 5.74 65

produce two sets of five true threshold assignments. Let tm = (dv + 2)/2 be the mean

9

threshold, tr = tf (dv + 2)/2 be the threshold amplitude, and tf be a real value in the range
[0, 1], called the threshold fraction. Then when tf = 0.5 (resp., tf = 1), the threshold range
for v, from which tv is selected uniformly at random, is [(dv + 2)/4, 3(dv + 2)/4] (resp.,
[0, (dv + 2)]). In this way, the threshold ranges are always centered about tm for each v.
The threshold limits 0 and dv + 2 are selected because the former threshold will always be
satisfied and the latter never will. We generate five true threshold assignments (instances
ti), per network, for each of tf = 0.5 and 1.0. Therefore, we have 10 different threshold
assignments for each network.

(Transition) probabilities p are set uniformly for all nodes in a network. We examine uni-
form or homogeneous probabilities p = 0.25, 0.5, 0.75, and 1. We often write the probability
as ph to emphasize the probabilities are homogeneously assigned to all nodes of a network.
The purpose of Algorithm 1 and this study is to find (estimate) these true thresholds and
probabilities of local functions.

Finally, for Algorithm 1, when ph < 1, we submit a query repeatedly to assess stochas-
ticity. The numbers of repetitions r examined are 10, 20, 30, 40, 50, 100, 500, and 1000. We
note that these repetitions are counted in the number of queries submitted. For example,
when r = 30, for each query formed, this counts as 30 queries submitted whose successor
states are returned. For ph = 1, only r = 1 repetition is required. For each set of true
values (thresholds and probabilities), we compute ten estimated solutions to account for
stochastic effects; typically, we average these results in Section 6.2 below. These parameters
are summarized in Table 2.

Table 2: Summary of the parameters and their values used in the analyses.

Parameter Description

Networks. Three networks in Table 1.

Threshold model. The Probabilistic Threshold Functions (PTFs) of Section 2.2.

Threshold frac-
tion, tf .

The threshold fraction 0 ≤ tf ≤ 1 (taken as 0.5 and 1 here) determines the
range over which true thresholds tv are determined for nodes v, and the range
over which thresholds are evaluated in estimating thresholds t̂v according to
Algorithm 1. We have tm = (dv + 2)/2 and tr = tf (dv + 2)/2, such that the
threshold range is given by the interval [tm − tr, tm + tr].

Threshold in-
stance, ti.

For each network, there are five independent threshold assignments made to
nodes for each of tf = 0.5 and 1, called true thresholds. Values for instances
are labeled 1 through 5.

Probabilities, p. For PTFs, when a node’s threshold is met, with probability p, a node will
transition from state 0 to 1; with 1 − p, a node will not transition, even
though its threshold is met. We examine values of p = 0.25, 0.5, 0.75, and 1.
Values are uniform or homogeneous for all nodes of a network in each analysis.

Number r of
repetitions of the
same query.

The number of repetitions of the query, to obtain successor configurations, is
to account for the stochasticity in the local function. The number of repeti-
tions are 10, 20, 30, 40, 50, 100, 500, and 1000.

Estimated solu-
tions.

For each assignment of true thresholds and probabilities, ten estimated solu-
tions are computed according to Algorithm 1. Thus, many results below are
the average of 50 values (5 true instances × 10 estimated solutions per true
instance).

10

6.2 Evaluation of True Threshold Assignments and Estimated
Thresholds

Four different types of experimental results are presented for the three networks. Our
findings are confined to the parameters of this study.

Effect of number of queries and number of repetitions on errors in estimated
thresholds. Figure 1a provides average threshold error as a function of the number of
queries for ca-condmat. Average threshold error is given by et = (1/n) Σv∈V

∣∣[tv− t̂v]∣∣. Each
curve is data from one analysis, for a particular r value, and captures the dynamic nature
of reductions in et as Algorithm 1 executes. Curves, in moving left to right, correspond to
increasing r, from 10 to 1000. Final et values are approached asymptotically for each r.

101 102 103 104 105 106
Num. of Queries

0.0
0.5
1.0
1.5
2.0

Av
e.

 T
hr

es
ho

ld
 E

rro
r

(a)

100 101 102 103 104

Num Repetitions of Query
103

104

105

106

Av
e

Nu
m

 Q
ue

rie
s

(b)

Figure 1: Time evolution in progress toward solutions for estimated node thresholds as a
function of number of queries. (a) Graph ca-condmat and tf = 1. Curves, in moving from
left to right, correspond to r = 10, 20, 30, 40, 50, 100, 500, and 1000. As r increases, more
queries are executed. (b) Graph ca-condmat; tf = 0.5 and 1; and ph = 0.25, 0.5, and 0.75.
The take-away is that while increasing r in the range 20 to 100 does improve (reduce) et,
the effect is not marked.

Limitations in the effectiveness of query repetitions. Figure 1b shows final results
from the data in Figure 1a for ca-condmat, but now the average number of queries to obtain
small threshold errors is shown as a function of r. The major result is that driving up the
number r of repetitions does not bring major benefits. While there is benefit in increasing
r, because et may reduce from 0.01 to 0.0001 with increasing r in the range 20 to 100, it
is not a major effect in practical terms. Rather, r serves as a multiplier for each unique
query formed, which increases the cost of estimating thresholds (in terms of total numbers
of queries). Note that each data point is the average of 50 values from Table 2.

Reductions in variance in numbers of queries to achieve solutions, and its limits.
Figure 2 provides two plots, for ca-grqc and ca-hepth, to evaluate how the maximum number
of queries reduces toward the average number of queries, as r increases. Note that there is a
permanent difference between the maximum and average that does not vanish as r increases
up to 1000: 5% for ca-grqc and 10% for ca-hepth. These data show that the biggest range
in numbers of queries is for ph = 0.25 and least for ph = 0.75.

Comparisons in numbers of queries to estimate thresholds for stochastic PTFs
and deterministic threshold functions. Comparisons are made between stochastic
PTFs where ph < 1 and the analogous deterministic model where ph = 1. Results are
shown in Figure 3 for ca-grqc and ca-condmat, for tf = 0.5 and 1 (although the results for
different tf essentially overlay). The results for ph = 1 are used to normalize the results at
all ph values to obtain the multiplier in the number of queries required to estimate thresholds

11

0 10 20 30 40 50
Num. Query Repetitions

0.00
0.05
0.10
0.15
0.20

(m
ax

-a
ve

)/(
av

e)
 Q

ue
rie

s

ph = 0.25
ph = 0.5
ph = 0.75

(a)

0 10 20 30 40 50
Num. Query Repetitions

0.00
0.05
0.10
0.15
0.20

(m
ax

-a
ve

)/(
av

e)
 Q

ue
rie

s

(b)

Figure 2: Reductions in the ranges of numbers of queries to compute estimated threshold
solutions. Data are shown for (a) ca-grqc and tf = 0.5, and (b) ca-hepth and tf = 1. For
these data, the differences between maximum and average are greatest for ph = 0.25 and
least ph = 0.75 at r = 10. However, as r increases to 50, the maximum number of queries,
over 50 instances, decreases toward the average number of queries (but not monotonically
for ca-hepth).

for stochastic models. From these plots, the multiplier is about 20. Note that if we required
exact solutions, which correspond to r ≈ 100, then this multiplier would increase to roughly
100, and hence in this sense, these results are conservative.

0.00 0.25 0.50 0.75 1.00
Transition Probability

0

10

20

30

Ra
tio

 o
f N

um
 Q

ue
rie

s

tf = 0.5
tf = 1

(a)

0.00 0.25 0.50 0.75 1.00
Transition Probability

0

10

20

30

Ra
tio

 o
f N

um
 Q

ue
rie

s

(b)

Figure 3: Effect of stochastic transitions on the number of queries to estimate thresholds
for (a) ca-grqc and (b) ca-condmat. Ratio of number of queries with transition probability
ph < 1, normalized by the number of queries when the transition probability ph = 1. To be
conservative, we assume that the r = 20 results give sufficiently accurate et values. These
data indicate that when ph < 1, so that the model is stochastic, a factor of roughly 20 on the
number of queries is required to obtain good threshold estimates, compared to the number
of queries required in the deterministic case (ph = 1).

7 Future Research Directions

There are several directions for future work. One direction is to further improve the bounds
on the size of complete query sets for symmetric functions. Another direction is to consider
other classes of local functions to capture users’ choices. A limitation of our work is the
assumption that the entire system is observable; that is, queries and responses specify the
states of all the nodes in the system. It is of interest to investigate techniques that overcome
this limitation.

12

Acknowledgments: We thank the computer systems administrators and managers at the
Biocomplexity Institute for their help in this and many other works: Dominik Borkowski,
William Miles Gentry, Jeremy Johnson, William Marmagas, Douglas McMaster, and Kevin
Shinpaugh. This work has been partially supported by DARPA Cooperative Agreement
D17AC00003 (NGS2), DTRA CNIMS (Contract HDTRA1-11-D-0016-0001), NSF DIBBS
Grant ACI-1443054 and NSF BIG DATA Grant IIS-1633028. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon.

References

[1] A. Adiga, C. J. Kuhlman, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E.
Stearns. Inferring local transition functions of discrete dynamical systems from obser-
vations of system behavior. Theor. CS., 679:126–144, 2017.

[2] A. Adiga, C. J. Kuhlman, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E.
Stearns. Learning the behavior of a dynamical system via a ‘20 questions’ approach.
Proc. AAAI (to appear), 2018.

[3] R. Axelrod. The Complexity of Cooperation. Princeton University Press, Princeton,
NJ, 1994.

[4] C. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E.
Stearns. Modeling and analyzing social network dynamics using stochastic discrete
graphical dynamical systems. Theoretical Computer Science, 412(30):3932–3946, 2011.

[5] C. L. Barrett, H. B. Hunt III, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz, and R. E.
Stearns. Complexity of reachability problems for finite discrete dynamical systems.
Journal of Computer and System Sciences, 72(8):1317–1345, 2006.

[6] X. Bei, W. Chen, J. Garg, M. Hoefer, and X. Sun. Learning market parameters using
aggregate demand queries. In Proc. AAAI, pages 411–417, 2016.

[7] G. Berry and C. J. Cameron. A new method to reduce overestimation of thresholds
with observational network data. arXiv:1702.02700v1 [cs.SI], Feb. 2017.

[8] D. Centola. The spread of behavior in an online social network experiment. Science,
329:1194–1197, 2010.

[9] Y. Crama and P. Hammer. Boolean Functions: Theory, Algorithms, and Applications.
Cambridge University Press, New York, NY, 2011.

[10] J. Epstein and R. Axtell. Growing Artificial Societies: Social Science from the Bottom
Up. Brookings and MIT Press, Cambridge, MA, 1996.

[11] Z. Füredi and J. Kahn. On the dimensions of ordered sets of bounded degree. Order,
3:15–20, 1986.

[12] S. González-Bailón, J. Borge-Holthoefer, A. Rivero, and Y. Moreno. The dynamics of
protest recruitment through an online network. Scientific Reports, 1:7 pages, 2011.

[13] A. Goyal, F. Bonchi, and L. V. S. Lakshmanan. Learning influence probabilities in social
networks. In Proc. ACM Intl. Conf. on Web Search and Data Mining (WSDM 2010),
pages 241–250, 2010.

13

[14] M. Granovetter. Threshold models of collective behavior. American Journal of Sociol-
ogy, pages 1420–1443, 1978.

[15] E. Kazemi, L. Chen, S. Dasgupta, and A. Karbasi. Comparison based learning from
weak oracles. Arxiv:1802.06942v1 [cs.LG], 2018.

[16] M. J. Kearns and V. V. Vazirani. An Introduction to Computational Learning Theory.
MIT Press, Cambridge, MA, 1994.

[17] J. Kleinberg, S. Mullainathan, and J. Ugander. Comparison-based choices.
arXiv:1705.05735v1 [cs.DS], May 2017.

[18] C. J. Kuhlman, V. S. Anil Kumar, M. V. Marathe, S. S. Ravi, D. J. Rosenkrantz,
S. Swarup, and G. Tuli. A Bithreshold Model of Complex Contagion and its Application
to the Spread of Smoking Behavior. In Proc. SNA-KDD Workshop, pages 18.1–18.10,
2011.

[19] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset
collection. http://snap.stanford.edu/data, June 2014.

[20] M. Macy and R. Willer. From factors to actors: Computational sociology and agent-
based modeling. Annual Reviews in Sociology, 28:143–166, 2002.

[21] M. Mitzenmacher and E. Upfal. Probability and Computing: Randomized Algorithms
and Probabilistic Analysis. Cambridge University Press, New York, NY, 2005.

[22] H. Mortveit and C. Reidys. An Introduction to Sequential Dynamical Systems. Springer
Science & Business Media, New York, NY, 2007.

[23] K. P. Murphy. Passively learning finite automata. Technical Report 96-04-017, Santa
Fe Institute, Santa Fe, NM, 1996.

[24] D. Romero, B. Meeder, and J. Kleinberg. Differences in the mechanics of information
diffusion across topics: Idioms, political hashtags, and complex contagion on twitter.
In Proceedings of the 20th international conference on World wide web, pages 695–704.
ACM, 2011.

[25] S. B. Rosenthal, C. R. Twomey, A. T. Hartnett, H. S. Wu, and I. D. Couzin. Revealing
the hidden networks of interaction in mobile animal groups allows prediction of complex
behavioral contagion. Proceedings of the National Academy of Sciences, 112(15):4690–
4695, 2015.

[26] K. Saito, R. Nakano, and M. Kimura. Prediction of information diffusion probabilities
for Independent Cascade model. In Proc. Knowledge-Based Intelligent Information and
Engineering Sytems (KES 2008), pages 67–75, 2008.

[27] G. Tuli, M. V. Marathe, S. S. Ravi, and S. Swarup. Addiction dynamics may explain the
slow decline of smoking prevalence. In SBP, volume 7227 of Lecture Notes in Computer
Science, pages 114–122. Springer, 2012.

[28] J. Urschel, V. Brunel, A. Moitra, and P. Rigollet. Learning determinantal point pro-
cesses with moments and cycles. In Proc. 34th ICML, pages 3511–3520, 2017.

[29] D. J. Watts. A simple model of global cascades on random networks. Proceedings of
the National Academy of Sciences, 99:5766–5771, 2002.

14

[30] Y. Zhou, J. Li, and J. Zhu. Identify the Nash equilibrium in static games with random
payoffs. In Proc. 34th ICML, pages 4160–4169, 2017.

Abhijin Adiga
Network Dynamics and Simulation Science Laboratory
Biocomplexity Institute of Virginia Tech
Blacksburg, VA 24061, USA
Email: abhijin@vt.edu

Chris J. Kuhlman
Network Dynamics and Simulation Science Laboratory
Biocomplexity Institute of Virginia Tech
Blacksburg, VA 24061, USA
Email: ckuhlman@vt.edu

Madhav V. Marathe
Network Dynamics and Simulation Science Laboratory
Biocomplexity Institute of Virginia Tech and
Computer Science Department, Virginia Tech
Blacksburg, VA 24061, USA
Email: mmarathe@vt.edu

S. S. Ravi
Network Dynamics and Simulation Science Laboratory
Biocomplexity Institute of Virginia Tech
Blacksburg, VA 24061, USA and
Department of Computer Science
University at Albany – State University of New York
Albany, NY 12222
Email: ssravi@vt.edu

Daniel J. Rosenkrantz
Department of Computer Science
University at Albany – State University of New York
Albany, NY 12222
Email: drosenkrantz@gmail.com

Richard E. Stearns
Department of Computer Science
University at Albany – State University of New York
Albany, NY 12222
Email: thestearns2@gmail.com

15

A Appendix

A.1 An Example of a Synchronous Dynamical System (SyDS)

v5v1

v2

v3

v4

Figure 4: The underlying
graph of a SyDS

Example: Consider the graph of a SyDS shown in Figure 4.
Assume that initially, v1, v4 and v5 are in state 1 and all other
nodes are in state 0. Thus, the initial configuration C0 of the
system is (1, 0, 0, 1, 1).

Let us first consider the case when each local function is a
threshold function (i.e., the system is deterministic). Suppose
the local transition functions at each of the nodes v1, v2 and v3 is
the 2-threshold function and those at v4 and v5 are 1-threshold
functions. During the first time step, the states of nodes v2 and
v3 change to 1 since each of them has a score of 2 and their

local functions are 2-threshold functions. The states of v4 and v5 remain at 1 (since each
of them has a score of 1 and their local functions are 1-threshold functions). The state of
v1 changes to 0 since its threshold is 2 and its score is 1. Thus, the configuration C1 of the
system at time 1 is (0, 1, 1, 1, 1). In the next time step, it can be seen that v1 changes to
1 while the other nodes remain at 1. Thus, the configuration C2 of the system at time 2
is (1, 1, 1, 1, 1). The system remains in this configuration forever; that is, the configuration
(1, 1, 1, 1, 1) reached at time 2 is a fixed point for the system.

Now, suppose the local functions are probabilistic threshold functions. Suppose the
local transition functions at each of the nodes v1, v2 and v3 is the 2-threshold function with
probability 0.75 and those at v4 and v5 are 1-threshold functions with probability 0.9. Let
the initial configuration C0 be (1, 0, 0, 1, 1) as before. At time 1, the state of v1 changes to
0 (since its score is 1 but its threshold is 2). For each of the nodes v2 through v5, even
though the scores is at least as large as its threshold, there is a non-zero probability that
their states will change to 0 in time step 1. Thus, the system may reach the configuration
(0, 0, 0, 0, 0) at time step 1 with probability 1/16. This configuration is a fixed point for the
stochastic system.

A.2 Chernoff bounds

Some of our results rely on the following theorem for independent binary random variables.
For a proof of this theorem, the reader is referred to [21].

Theorem A.1 (Chernoff bounds). Suppose X1, . . . , Xn are independent random binary
variables, X denotes their sum, and µ = E[X]. Then

Pr[X ≥ (1 + β)µ] ≤ e−β
2µ/3, 0 < β < 1, (4a)

Pr[X ≥ (1 + β)µ] ≤ e−βµ/3, 1 < β, (4b)

Pr[X ≤ (1− β)µ] ≤ e−β
2µ/2, 0 < β < 1. (4c)

A.3 Proof of Lemma 3.1

We first establish three claims which are useful in proving Lemma 3.1.

Claim A.2.
(
1 + 1

b

)b
is monotone increasing in b for positive integers.

Proof: Consider the collection of (b + 1) numbers
(
1, b+1

b , . . . , b+1
b

)
. Using the fact that

16

their arithmetic mean is ≥ their geometric mean, we have

1 + b
(
b+1
b

)
b+ 1

≥
(

11
(b+ 1

b

)b) 1
b+1

Hence,

(b+ 1) + 1

b+ 1
≥
(b+ 1

b

) b
b+1

.

Claim A.3.
(
d
b

)(
b
d

)b(
1− b

d

)d−b ≥ 1√
2(d+1)

.

Proof: Let h(b, d) =
(
d
b

)(
b
d

)b(
1− b

d

)d−b
. We will first show that for b ≤

⌊
d
2

⌋
−1, h(b+1, d) <

h(b, d) and for b ≥
⌊
d
2

⌋
, h(b + 1, d) ≥ h(b, d), and hence, h(·) attains a minimum value

at b =
⌊
d
2

⌋
.

h(b+ 1, d)

h(b, d)
=

(
d
b+1

)(
d
b

) (b+1
d

)b+1(
b
d

)b
(
1− b+1

d

)d−b−1(
1− b

d

)d−b
=
d− b
b+ 1

(b+ 1

b

)b b+ 1

d

(d− b− 1

d− b

)d−b d

d− b− 1

=
(b+ 1

b

)b(d− b− 1

d− b

)d−b−1

=
(b+ 1

b

)b(b′

b′ + 1

)b′
,

where, b′ = d − b − 1. When b ≤
⌊
d
2

⌋
− 1, b′ > b and when b ≥

⌊
d−1

2

⌋
+ 1, b′ ≤ b. The

rest follows by applying Claim A.2. When b is even, it is well-known that h
(
d
2 , d
)
≥ 1√

2d

(using a lower bound on the central binomial coefficient). Now we will show that when b is
odd, h

(
d−1

2 , d
)
≥ 1√

2(d+1)
. Let b = 2k + 1.

h
(
k, 2k + 1

)
h
(
k, 2k + 2

) =

(
2k+1
k

)(
2k+2
k

) (k
2k+1

)k(
k

2k+2

)k
(
1− k

2k+1

)k+1(
1− k

2k+2

)k+2

=
k + 2

2k + 2

(2k + 2

2k + 1

)k(k + 1

k + 2

)k+1(2k + 2

2k + 1

)k+1 2k + 2

k + 2

=
(

1 +
1

2k + 1

)2k+1(
1 +

1

k + 1

)−(k+1)

> 1 .

The inequality follows from Claim A.2. Therefore, when d is odd,

h
(
d−1

2 , d
)
> h

(
d−1

2 , d+ 1
)
≥ h

(
d+1

2 , d+ 1
)
≥ 1√

2(d+1)
.

This completes the proof of Claim A.2.

Claim A.4. For any positive x ≤ 1
2 , 1− x ≥ e−2x.

17

Proof: e2x(1− x) > (1 + 2x)(1− x) = 1 + x(1− 2x) ≥ 1.

Statement of Lemma 3.1: Let b, d and D be positive integers such that b ≤ d ≤ D and

let z =
〈
bD
d

〉
. Then,

(
d
b

)(
z
D

)b(
1− z

D

)d−b ≥ 1
11
√
d+1

.

Proof of Lemma 3.1: We have two cases to consider: (a) z ≤ bD
d and (b) z > bD

d . But

first we note that by definition,
∣∣z − bD

d

∣∣ ≤ 1
2 .

Case (a). bD
d −

1
2 ≤ z ≤

bD
d .(

d

b

)(z
D

)b(
1− z

D

)d−b
≥
(
d

b

)(z
D

)b(
1− b

d

)d−b
≥
(
d

b

)(b
d
− 1

2D

)b(
1− b

d

)d−b
≥
(
d

b

)(b
d

)b(
1− b

d

)d−b(
1− d

2bD

)b
≥ 1

2
√
d

(
1− d

2bD

)b
≥ 1

e2
√

2(d+ 1)
≥ 1

11
√
d+ 1

.

The last but one inequality follows from Claim A.4 and using the trivial bound d/D ≤ 1.

Case (b). bD
d ≤ z ≤

bD
d + 1

2 .(
d

b

)(z
D

)b(
1− z

D

)d−b
≥
(
d

b

)(b
d

)b(
1− z

D

)d−b
≥
(
d

b

)(b
d

)b(
1− b

d
− 1

2D

)d−b
≥
(
d

b

)(b
d

)b(
1− b

d

)d−b(
1−

1
2D

1− b
d

)d−b
≥ 1√

2(d+ 1)

(
1− d

2(d− b)D

)d−b
>

1

11
√
d+ 1

.

This completes the proof of Lemma 3.1.

A.4 Proof of Theorem 4.1

Statement of Theorem 4.1: For any n ≥ 1, there is a SyDS S with N ≥ n nodes such
that (i) each local function of S is a deterministic threshold function and (ii) under the
batch mode, there is an incomplete query set of size Ω(2N) for S.

Proof: We construct such a SyDS S as follows. Given an integer n ≥ 1, choose the smallest
integer N ≥ n such that N = 2k − 1 for some positive integer k ≥ 3. The underlying graph
G(V,E) of S is a complete binary tree with k levels. To specify the queries, assume that
the root is named v1, the two children of the root are named v2 and v3 respectively, and
the remaining N − 3 nodes are labeled arbitrarily using the labels v4 through vN . The local
function at each node is a threshold function, where the threshold value is strictly positive.
However, different nodes may have different threshold values and the goal is to infer the
threshold values of all the nodes.

18

For a query q, let q(i) denote the value specified by q for node vi, 1 ≤ i ≤ N . (Note that
q(i) ∈ {0, 1}, 1 ≤ i ≤ N .) Consider the query set Q defined by

Q = {q : q(i) = 0, i = 1, 2, 3}.

Thus, Q contains each query q such that the first three entries of q are all 0. Hence
|Q| = 2N−3 = Ω(2N). The root node v1 has a degree of 2 and has a positive threshold; that
is, its threshold value can be any integer in the range 1 through 4. If a query set is complete,
then for each j ∈ {0, 1, 2, 3}, it must contain a query q such that score(v1, q) = j. However,
from the way Q is constructed, it can be seen that for every query q ∈ Q, score(v1, q) = 0.
Thus, from the responses to the queries in Q, one cannot correctly identify the threshold
of the root node. In other words, even though |Q| = Ω(2N), Q is not a complete query set
under the batch mode.

19

