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Abstract. As modern society increasingly relies on long-distance agricultural trade,
food networks act as conduits for invasive species spread, contamination and other
disruptions. Therefore, understanding their structural and dynamical properties is
critical for food security and social welfare. Here, we present a novel approach
to identify important dynamics-induced clusters of highly-connected nodes in the
network. The method employs Moore-Shannon network reliability coupled with
discrete-time SIR diffusion model over directed weighted networks. We apply it
to analyze international trade networks corresponding to four solanaceous crops ob-
tained using the Food and Agricultural Organization trade database.

Our analysis shows that the structure and dynamics can greatly vary across com-
modities. However, a consistent pattern that we observe in these commodity-specific
networks is that almost all clusters that are formed are between adjacent countries in
regions where liberal bilateral trade relations exist. Our analysis of networks of dif-
ferent years shows that intensification of trade has led to increased size of clusters,
which in turn implies that the number of countries spared from the network effects
of disruption is reducing. Finally, applying this method to the aggregate network
obtained by combining the four networks reveals clusters very different from those
found in the constituent networks.

1 Introduction

The global food system is characterized by concentrated and specialized agricultural
production, and an ever increasing reliance on the long-distance trade of these com-
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modities. This makes it vulnerable to extreme events such as climate change [16],
invasive species introductions [9] and contamination [5]. Therefore, understanding
the structural and dynamical properties of food trade networks is critical to ensure
food security, health and economic stability.

Here, we study international agricultural commodity networks, where the net-
work consists of countries as nodes and directed weighted edges representing the
volume of export from the source to the destination. In particular, we analyze a set
of commodity-specific networks comprising of crops belonging to the Solanaceae
family, which includes tomato, eggplant, potato and peppers over a span of 10
years. These networks are constructed from the Food and Agricultural Organization
(FAO) trade matrix database [6]. Previous works [1, 5, 17], have typically studied
networks aggregated over multiple commodities. However, there are several appli-
cations where it is important to consider commodity-specific trade.

Our choice of networks of solanaceous crops is motivated by the recent global in-
vasion of the pest, South American tomato leafminer or Tuta absoluta [2,3]. Within
a decade of its accidental introduction to Spain from its native habitat in South
America, this moth has spread to most parts of Europe and Africa, West, Central
and South Asia. There is overwhelming evidence that it has spread to extensive
trade between countries in these regions. While its primary target is tomato, it can
attack and survive on other solanaceous crops such as the ones mentioned above. In
general, there is an emerging trend to account for trade and other human-mediated
pathways while modeling invasive species spread [8]. Besides, independent of this
application there is merit in analyzing flows of these crops; tomato and potato are
among the top traded essential vegetables. Disruptions in their production or sup-
ply can have enormous socio-economic impact. This analysis will help identify the
vulnerabilities in these networks and help risk analysts make informed decisions in
mitigating contagion processes over these networks.
Our contributions. In this paper, we develop a novel method to analyze the dynam-
ical properties of the above-mentioned networks. Through the lens of a discrete-time
SIR process coupled with network reliability principles [12,20], we identify critical
subsets of nodes in the networks, which we refer to as contagion clusters (formal
definitions are provided later). Broadly, these are well-connected maximal subsets
of nodes such that if the infection is introduced to the cluster, it spreads rapidly
within the cluster. We assess their vulnerability and role as hubs by computing the
minimum (weight) cuts and total volumes of their imports and exports with the rest
of the network. Further, we compare the networks based on their contagion clusters:
How do the networks and therefore the contagion clusters differ across communi-
ties? How have they evolved over time? How does an aggregated network differ
from its constituent networks? Some of our results are as follows:

• We identified important contagion clusters in the food networks which act as hubs
towards the spread of contagion; they are not only vulnerable to attacks, but can
also spread the infection to a large number of vertices.
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• We observe that the size and participating vertices of prominent contagion clus-
ters can differ greatly across commodities. However, all of these clusters tend to
be region-specific, e.g., countries localized to Europe or North America.
• Our analysis of the tomato networks over a period of 10 years reveals that in-

tensification of trade has led to increase in both volume traded within contagion
clusters and their connectivity outside. Moreover, the size of top contagion clus-
ters has increased over the years.
• Some contagion clusters in the aggregate network span continents, unlike those

in the commodity-specific networks.

Methodologically, we provide a novel way to find decompose and analyze directed
weighted networks.
Related work. A number of works have analyzed world trade networks constructed
from UN datasets. Serrano and Boguná [17] analyze the structural properties of
the World Trade Web obtained by aggregated trade statistics from the ComTrade
dataset. Baskaran et al. [1] study the evolution of networks induced by different
product groups over time. Perhaps, the work that is closest to ours is by Erc-
sey et al. [5]. In this paper, an international food trade network is constructed by
aggregating product codes corresponding to food. They perform structural anal-
ysis based on weighted betweenness centrality and graph density, and dynamical
analysis using a diffusion model to assess the complexity and vulnerabilities of the
network. There are two key differences between the above-mentioned works and
ours. Unlike the FAOSTAT trade matrix, ComTrade reports the value of goods ex-
ported from one country to another in US dollars. Secondly, the network is obtained
by aggregating categories corresponding to food products. Suweis et al. [18] use
production and trade data from FAO and demographics information to assess the re-
silience and the reactivity of the coupled population food system. To this end, they
develop a diffusion model referred to as food-demographic delayed logistic model.
Again, they use aggregated trade data for network construction.

Agricultural commodity networks are being increasingly considered in specific
application domains such as invasive species spread, bio-warfare and transportation.
Nopsa et al. [8] study rail networks of grain transport in the US and Australia in the
context of pathogen and mycotoxin spread. They identify key nodes in the network
to monitor or quarantine so that the spread is mitigated. Venkatramanan et al. [19]
model the domestic seasonal vegetable trade network in Nepal and show that spread
of invasive species is correlated with trade flows of host crops. Robinson et al. [15]
consider the network of US food flows, and use a linear programming approach to
reconfigure the flows to minimize total miles in the network.

Community detection in unweighted, undirected networks has been studied ex-
tensively using algorithms based on modularity [13], q-state Potts model [14], ex-
tremal optimization of modularity [4]. Malliaros et al. [10] have explored clustering
for directed networks. Ghosh et al. [7] have examined the dependence of a dynamic
process on the structure of the network to identify important vertices participating
in the dynamics and communities in the network.
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2 Network construction

The international food trade networks that we study in this paper are obtained from
Food and Agriculture Organization (FAO) [6]. Especially, we obtained the Detailed
Trade Matrices at the country level for each of the crops (Tomatoes, Potatoes, Egg-
plants and Peppers) and years (2005-2013) of interest. We also focused on the Quan-
tity of trade (measured in tonnes) and not the associated monetary Value (measured
in US dollars). The raw data is structured as follows for each year Y and crop C:
Given a pair of countries (r, p) (stands for Reporter and Partner), we have two
quantities namely Er,p and Ir,p. Er,p is the quantity of the commodity being exported
by r to p as reported by r. Likewise, Ir,p is the quantity of the commodity being
imported by r from p, as reported by r.

We note that there are reporting discrepancies in the raw data, i.e., Er,p 6= Ip,r for
some pairs of (r, p). So we construct a maximal trade matrix whose edge weights
are given by Wi, j as

Wi, j = max(Ei, j, I j,i).

In the context of food security and invasion risk, the maximal trade matrix can be
considered as the worst-case scenario.

3 Network reliability and contagion clusters

Network reliability was originally proposed by Moore and Shannon [11] to under-
stand the reliability of electrical circuits with unreliable individual components. Re-
cently [12,20], this concept has been adapted to understand the likelihood of certain
events (aka properties) occurring in graph-based dynamical systems. We introduce
basic terminology and associated notations to describe the concepts and our algo-
rithm to discover contagion clusters in this section.

Given a graph G = (V,E), and dynamics D , reliability R(G ,D ,P) is used to
denote the probability of property P being satisfied by the dynamic process. Here,
D is the independent cascade epidemic process or the discrete-time Susceptible-
Infected-Removed (SIR) process where an infected node remains in that state for
one unit step before transitioning to R. One possible P could be the property that at
least α fraction of nodes are infected. Note that for contagion-like dynamics on
graphs, a typical parameter associated with it is the probability of transmission
through each edge x. When the property of interest is implicitly understood, the
reliability (polynomial) is sometimes expressed as R(x;G ), and is a global measure
which depends on both the network structure and the dynamics.

Independent cascade process can be viewed as the random subgraph obtained by
sampling edges in G independently with probabilities x, thus resulting in a contagion
subgraph Gx. Gx may or may not satisfy the property P of interest. Let struts be the
minimal subgraphs that satisfy property P . Likewise, let cuts be minimal subgraphs
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which when removed from G destroy the property P . Together, we denote them as
cruxes.
Remark: Network reliability calculation for homogeneous edge probabilities is
mathematically and computationally more amenable than for arbitrary edge weights.
Hence for the purpose of computing R(x;G ), we convert the maximal trade matrix
weights into parallel edges. Given a step size ∆ , an edge of weight w between nodes
i and j is converted into bw

∆
c simple edges between them. This also allows us to

(a) quantize the flow volume to separate edges representing individuals shipments,
(b) evaluate the impact of reducing edge weights, instead of completely removing
them and (c) simulate unweighted version of the dynamics where each simple edge
has an associated probability of x. The resulting multi-graph G is then the quantized
representation of the maximal trade matrix W .
Contagion Clusters Extraction Algorithm. In G , we are interested in collections
of nodes {CCl} which have a shared vulnerability to the contagion, i.e., infection
of a node i ∈CCl significantly increases the likelihood of other nodes j ∈CCl to be
infected. Though similar to the concept of communities, note that there is an added
emphasis on the dynamics. We refer to these as contagion clusters. The necessary
characteristic of a contagion cluster is that it must induce a strongly connected com-
ponent (SCC) in the network. In addition, the connectivity within the cluster should
be strong enough for each vertex to have enough influence on the rest of the nodes
in the cluster. We develop an algorithm called COCLEA (COntagion CLusters
Extraction Algorithm) to identify these clusters using network reliability.
Definition: Given a network G , the contagion score of a set X ⊆V is given as:

ψ(X) =
1
|X | ∑i∈X

σ
D
X (i)

where σD
X (i) is the expected number of nodes in X that get infected by dynamics

D , when we start by initially infecting i with transmission probability, x. A set X is
a contagion cluster of size n, if it maximizes ψ(X) for all X ⊆V with |X |= n.

The algorithm for extracting mutually exclusive contagion clusters (or potential
candidates) of size ≤ n is described in Algorithm 1. The property P of interest is
that there exists no strongly connected component (SCC) with |SCC| > n, where
n is a parameter that governs maximum contagion cluster size. The edge ranking
algorithm scores each edge by its marginal contribution to the overall reliability. The
contribution of an edge e is estimated as follows: Draw a random sample of cruxes
K = {k}, and identify the subset of cruxes that do not contain e, i.e., K′e = {k : e /∈ k}.
The inverse of the probability that at least one of these cruxes occur in a random
subgraph of G is the score ηx(e). Let max |SCC| be the size of the largest strongly
connected component in G . When max |SCC| > n, edges are removed sequentially
by importance until there exists no SCC with |SCC| > n. If max |SCC| ≤ n, the
algorithm terminates and returns all contagion clusters at that stage. Note that in
the process of detecting such clusters, we also rank the edges in G in terms of their
importance for the contagion process.
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Remark on edge score: The more likely it is that a random edge would show up in
a certain set of cruxes, the less likely it is that an edge that shows up in that set is
important. Hence an edge present in a single small crux is more important than an
edge that is present in a single larger crux. Similarly, an edge that is present in many
cruxes is more important than one that is present in only a few (if their sizes are all
the same).

Algorithm 1: Contagion Clusters Extraction Algorithm (COCLEA)
Result: edge rankings ER; contagion clusters {CCl}

1 G = (V,E); ER = [];
2 while G does not satisfy P do
3 Randomly sample cruxes K = {k};
4 For every e ∈ E(G ), ηx(e) = P[∃k′ ∈ K′e : k′ ⊆ Gx]

−1;
5 e∗ = argmaxe ηx(e);
6 ER = ER∪{e∗};
7 E(G ) = E(G )\e∗;
8 end
9 {CCl}= strongly connected components in G

4 Experimental results

The clustering algorithm was applied to study annual trade networks corresponding
to four major crops of the Solanaceae family: tomato, potato, eggplant and pepper
between 2005 and 2013 (Table 1). We discovered the contagion clusters for each of
these networks, the prominent ones are listed in Table 2. In this section, we study
the properties of these clusters and compare them across commodities and years. For
the three input parameters of COCLEA, we used the following values: cluster size
(n = 2,5,10,20,30, |V |), step size (∆ = 1000) and probability (p = 0.01,0.1,0.5).
Also, throughout this section, for brevity, we refer to countries by their ISO-3 code.

Table 1: Networks and their properties.

Network Nodes Edges Volume
(Kilo Ton.)

Network Nodes Edges Volume
(Kilo Ton.)

Tom05 186 1198 5355 Egg05 142 656 346
Tom07 189 1310 7360 Egg07 149 715 440
Tom09 188 1200 7490 Egg09 146 681 458
Tom11 192 1249 7822 Egg11 146 739 490
Tom13 189 1305 8247 Egg13 160 776 487
Pot05 206 1561 10156 Pep05 184 1809 330
Pot07 204 1780 12417 Pep07 188 1973 350
Pot09 204 1657 11659 Pep09 183 1804 348
Pot11 205 1778 14239 Pep11 183 1912 367
Pot13 205 1834 14575 Pep13 192 2063 412
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Table 2: Prominent/interesting contagion clusters. All volumes are in Kilo Tonnes.
Regarding network names, “NA” stands for North America.

Cluster
name

Countries Network Num.
edges

Vol. Min.
wt.
cut

Min.
cut

Inc.
nbrs

Inc.
vol.

Outg.
nbrs

Outg.
vol.

EU-T-13 PRT, NLD, BEL,
FRA, ESP

Tom13 20 691 32 3 47 421 78 2142

EU-T-11 ” Tom11 20 705 44 3 46 400 68 1949
EU-T-09 ” Tom09 21 658 31 3 41 447 69 1755
EU-T-07 ” Tom07 20 646 28 2 48 371 70 1650
EU-T-05 ” Tom05 20 580 23 2 52 309 90 1567
NA-T-13 USA, MEX, CAN Tom13 6 1955 15 1 23 21 43 12
NA-T-11 ” Tom11 6 1858 23 1 28 25 36 9
NA-T-09 ” Tom09 6 1604 57 1 25 17 35 4
NA-T-07 ” Tom07 6 1522 48 1 22 13 43 8
NA-T-05 ” Tom05 6 1265 14 1 26 13 33 7
C1-P-13 FRA, BEL, NLD,

DEU, ISR
Pot13 20 4913 53 4 43 385 145 3773

C2-P-13 FRA, EGY, BEL,
ITA, DEU, DNK,
GBR, ESP, NLD,
ISR

Pot13 87 7602 53 6 52 249 147 248

SE-P-13 MYS, SGP, IDN Pot13 6 14 2 2 28 290 13 2
SA-P-13 LKA, IND, VNM Pep13 5 17 1 1 35 19 122 166

To quantify the structural properties of the clusters and compare one another we
computed different metrics for each mined cluster. This is summarized in Table 2
for some of the chosen clusters. To assess the strength of connectivity among cluster
vertices, we computed minimum weighted cut and the minimum cut of the cluster by
applying the max-flow min-cut algorithm on the weighted and unweighted network
induced by the cluster. The minimum weighted cut gives the minimum total volume
of trade that needs to be reduced in order to disconnect the cluster, i.e., it will no
longer be a strongly connected component. The minimum cut gives the minimum
number of edges that need to be removed to disconnect the cluster. To assess a
cluster’s role in the bigger network that it is part of, we also looked at the total
volume of import into the cluster (incoming volume) and total volume of export
from the cluster (outgoing volume). The former is an indicator of vulnerability of
the cluster to attacks, while the latter indicates the influence the cluster has on the
rest of the network. We also computed the number of distinct in-neighbors and out-
neighbors of the cluster. An in-neighbor (out-neighbor) is a node which does not
belong to the cluster and has an outgoing (incoming) edge to (from) the cluster.
Contagion clusters in commodity specific networks. Fig 1 show the contagion
clusters for tomato and potato trade networks when ∆ = 1000 and n is restricted
to 20. The colored clusters on the right of both the figures denote the contagion
clusters obtained using COCLEA. The big cluster on the left represent countries
which do not belong to any such SCC. However, they are either connected to some
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countries in the left cluster itself or to some of the countries outside. The colored
edges connect countries belonging to corresponding colored cluster.

We observe that for tomato networks, the European countries form a strong clus-
ter and is separated from others. However, in the case of potatoes, the European
countries have strong trading relations with both African and West Asian countries
(C1-P-13 and C2-P-13 for example). The North American countries (NA-T-13) are
fairly isolated from the rest of the world. Among the European countries, the core
countries correspond to EU-T-13 (Table 2). The European clusters, unlike the North
American cluster have lot more incoming and outgoing neighbors as well as vol-
ume. This indicates that not only is this cluster more vulnerable to attacks, it is also
a big hub and can lead to rapid spread of contagion to other several countries. An-
other interesting difference between tomato and potato networks is the existence of
several smaller clusters compared to tomato networks (e.g., SE-P-13).

In general, the eggplant network is very similar to that of the tomato network.
However, the volumes of trade are much small. While the EU-T-13 cluster appears
here, among the North American countries, only the cluster (USA, CAN) appears.
The most distinct of all networks is that of peppers (Pep13). It has only one cluster
(SA-P-13).
Effect of cluster size. Fig 2 shows how the largest SCC in a network decomposes
into smaller clusters as we decrease the parameter n. Consider network Tom13 quan-
tized with ∆ = 1000. The last row represents the largest strongly connected com-
ponent obtained for all n > 21, and consists solely of European countries. As we
decrease n, note that smaller clusters such as (SVN, HRV), (CZE, SVK), (HUN,
ROU) separate out at fairly early stages. Also countries like GRC and BGR drop
out of any strongly connected components (shown in grey). For smaller n, we see
the emergence of sub-clusters among Western European nations such as (GBR, IRL)
and the (ESP, PRT), etc. Alternatively for potato network with ∆ = 10000, we see
emergence of inter-continent clusters such as (EGY, GBR), and the presence of ISR
in the largest SCC for most values of n.
Network evolution over time. We studied the evolution of the cluster structure
over time. Due to lack of space, we only present the results for the tomato networks.
Overall, some clusters have remained stable over time. Two of them that stand out
are the core European cluster (EU-T-*) and the North American triple (NA-T-*)
(see Table 2). However, trade within these clusters has intensified over the years.
Also, both the incoming and outgoing volume have increased considerably. While
the number of countries to which these countries export has increased in the case
of NA-T-*, the number of countries from which this cluster imports has generally
remained same. Other clusters which appear for all years are (NZL, AUS) and (ARE,
OMN). In the recent years, new clusters have formed (THA, MYS) in Southeast
Asia and (ZAF, NAM) in Southern Africa. In fact, both these clusters export to a
large number of countries (43 and 23 respectively). There are some clusters (SYR,
JOR, LBN, SAU) which appear only in 2007 and earlier networks. Perhaps, political
conditions have led to a decrease or pause in trade between them.
The effect of aggregation. While in the commodity-specific networks, all major
clusters that were discovered were mostly region-specific, in the aggregated net-
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Fig. 1: Clusters for (a) Tomato trade network (b) Potato trade network, where ∆ =
1000 and n = 20. The colored clusters on the right of both the figures denote the
contagion clusters. The rest of the graph is to the left and cannot be seen in this figure
in the interest of zooming in on the clusters. The colored edges connect countries
belonging to corresponding colored cluster.

work (All13), we observed the formation of clusters spanning multiple continents.
When we allowed the clusters to be of any size, we observed one big cluster of
size 69. When we limited it to 20 and below, interesting patterns emerged. Perhaps
the most extreme of them all is (GTM, CAN, MEX, IND, VNM, ZAF, IDN, USA,
NAM) spanning Asia, North America and Africa. A more regional phenomenon that
we observe is the breaking up of European countries into two clusters. One cluster
consists of EU-T-13 and other European countries merged with some of the North
African and West Asian countries such as Israel. The other cluster consists of East
European countries and some Arab countries. Clearly, this indicates that if a pest or
pathogen is capable of spreading through trade of multiple commodities, then, the
expansion can be very rapid and unpredictable. Fortunately, there is no evidence of
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Fig. 2: Clusters for (a) Tomato trade network with ∆ = 1000 and (b) Potato trade
network with ∆ = 10000 and n = 20.

T. absoluta having spread through trade of any crop other than tomato. This study
also suggests that one should be cautious when aggregating commodities and inter-
preting the resulting networks.
Cluster size, Step size, probability. Cluster size plays a critical role in discov-
ering important contagion clusters. We have repeated our analysis for step size,
∆ = 500,1000 and 10000. We observed that as ∆ increases, stronger communi-
ties remain intact, even though lesser countries are present in the network. When we
ran our algorithm with transmission probability, x = 0.01,0.1,0.5 and restricted the
cluster size to be 20 for Tom13, we obtained the same results for the ranked edges
and the clusters. This suggests that the clusters are robust to change in probability
of transmission.

5 Conclusion and future directions

We analyzed international agricultural commodity networks using the Moore-Shannon
network reliability. Under the assumption of a discrete-time SIR diffusion process,
we proposed a method to discover highly-connected subsets of vertices, which we
refer to as contagion clusters. The method was applied to international trade net-
works of four crops. We studied the difference in structure of the networks across
commodities and across years. We identified important subsets of vertices which
can play a key role in the contagion process. There are several obvious directions to
extend this work. One important line of work is to study how the cluster structure
varies with the underlying diffusion process, such as an SI, SIS model or any other
model of the phenomenon being studied. Our multi-graph representation implic-
itly models the relationship between flow volumes (edge weights) and the infection
probability. It would be interesting to know how different functions of edge weights
affect mined clusters. In general, a direct implementation of computing edge rank-
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Fig. 3: Clusters for All13 network with ∆ = 1000 and n = 20. The colored clusters
on the right of both the figures denote the contagion clusters. The big cluster on the
left represent countries which do not belong to any such SCC. There are 2 big clus-
ters on the right, containing 19 and 20, containing European, African and Middle
East Asian countries. The colored edges connect countries belonging to correspond-
ing colored cluster.

ings for weighted graphs will be a significant methodological contribution. Sum-
marizing, the network reliability based methods provide a powerful tool to discover
important dynamics-related properties of networks.
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