
Boolean Games: Inferring Agents’ Goals Using Taxation Queries

Abhijin Adiga1 , Sarit Kraus2 , Oleg Maksimov2 and S. S. Ravi1
1Biocomplexity Institute and Initiative, University of Virginia, Charlottesville, VA, USA

2Department of Computer Science Bar Ilan University, Ramat Gan, Israel
{abhijin, ssravi}@virginia.edu, sarit@cs.biu.ac.il, oleg@maksimov.co.il

Abstract

In Boolean games, each agent controls a set of
Boolean variables and has a goal represented by a
propositional formula. We study inference prob-
lems in Boolean games assuming the presence of a
PRINCIPAL who has the ability to control the agents
and impose taxation schemes. Previous work used
taxation schemes to guide a game towards certain
equilibria. We present algorithms that show how
taxation schemes can also be used to infer agents’
goals. We present experimental results to demon-
strate the efficacy our algorithms. We also con-
sider goal inference when only limited information
is available in response to a query.

1 Introduction
Boolean games [Harrenstein et al., 2001] are a class of
games where agents’ goals are represented by a proposi-
tional logic formula. Each agent i controls a distinct set
of Boolean variables Φi, and there is a cost associated with
each assignment. Its formula or goal γi is composed of vari-
ables (set Γi) that are not necessarily in its control. Each
agent’s first priority is to achieve its goal and its second
priority is to minimize its total cost. Much of the work
on Boolean games is of theoretical nature [Harrenstein et
al., 2001; Sauro and Villata, 2013; Wooldridge et al., 2013;
Grant et al., 2014; Ågotnes et al., 2013; Bonzon et al., 2007;
Levit et al., 2013b]. Boolean games have been used to model
some real-world problems such as charging electric vehicles
and traffic signalling [Levit et al., 2013b].

Recently, a number of works have emerged where a user
either actively queries the system or uses passive observa-
tions to infer the functions in multi-agent systems [Kleinberg
et al., 2017; Adiga et al., 2018; Narasimhan et al., 2015;
He et al., 2016]. Wooldridge et al. [2013] introduced the
notion of a PRINCIPAL – an external agent– who can influ-
ence the agents’ decisions through taxation schemes (addi-
tional costs for assigning values to variables) to achieve a
desirable equilibrium. Under this framework, we study the
inference problem where the PRINCIPAL’s objective is to in-
fer the agents’ goals by repeatedly “querying” the system and
observing the outcomes.

It is known that pure Nash equilibria (PNE) need not
exist for every taxation scheme or there may be multiple
PNE [Levit et al., 2013b]. Such scenarios might make it im-
possible to infer some or all the goals. To overcome this prob-
lem, we allow the PRINCIPAL to inhibit some agents from
achieving their goals. A taxation query (or simply a query)
specifies (i) a subset of inhibited agents and (ii) an unam-
biguous taxation scheme (where costs for setting a variable
to 0 and 1 are not equal). While this framework seems to pro-
vide an unrealistic amount of control to the PRINCIPAL, we
show scenarios where without such control inference might
not be possible. Our approach is to strategically inhibit some
agents and infer the goals of uninhibited agents by simultane-
ously querying them using taxation schemes. To this end, we
construct a graph representing dependencies between agents’
goals and apply vertex coloring to that graph. Then, for each
query, the PRINCIPAL observes a PNE. The questions of pri-
mary interest here are: Does there exist a set of queries so that
the PRINCIPAL can infer all goals? If yes, what is its size?

1.1 Summary of Results
Necessary and sufficient conditions for the existence of
an NE for a taxation query. Using an undirected graph
(called the goal overlap graph) that captures the overlaps be-
tween the sets of variables used in agents’ goals, we establish
necessary and sufficient conditions for the existence of an NE
for a Boolean game and any {0,1}-taxation query, i.e., a query
with only 0 and 1 costs (Section 3).
Evaluating goals of selected agents at an NE. When there
is an NE for a {0,1}-taxation query, we show that the value of
the goals of selected agents for the zero cost assignment (i.e.,
the assignment whose cost is zero for a selected agent) can be
determined regardless of which NE is reached by the agents
(Section 3). We note that the results in this and the previous
paragraph hold for any unambiguous taxation query. We use
{0,1}-taxation queries for convenience.
Goal inference algorithms. Using the results in the above
two paragraphs, we show that taxation queries can be used
to infer agents’ goals. Our taxation queries play a role sim-
ilar to membership queries used to learn Boolean functions
(e.g., [Abasi et al., 2014; Angluin and Slonim, 1994]). Fur-
ther, using a valid node coloring of the goal overlap graph,
we show that the goals of many agents can be inferred simul-
taneously. We point out that the coloring-based scheme can



be significantly better than inferring the goals one at a time.
We also obtain more efficient (in terms of the number of taxa-
tion queries) goal inference algorithms for two special classes
of goal functions, namely threshold functions and symmetric
functions (Section 4).

Experimental results. We show experimentally that our
coloring-based inference algorithm uses significantly fewer
queries compared to inferring goals one at a time. Further,
the coloring-based approach also uses significantly less time
even for games with 36,000 agents (Section 5).

Inference with limited information. We show that goal in-
ference is possible in a context where the response to a query
only provides the values assigned to the variables and not
whether agents achieved their goals. In particular, we discuss
this result when each goal is a threshold function (Section 6).

For space reasons, most proofs are sketched or omitted;
detailed proofs can be found in [Adiga et al., 2020].

1.2 Related Work
Harrenstein et al. [2001] introduced Boolean games as a class
of two-player games and Bonzon et al. [2007] generalized the
framework to n players. Structural and computational prop-
erties of PNE in Boolean games are well-studied. Bonzon
et al. [2007] define a “dependency graph” between players
to characterize PNE in Boolean games, much like our goal
overlap graph. Levit et al. [2019; 2013b] study methods for
finding a taxation scheme that incentivizes the agents to reach
a stable state. Also, Levit et al. [2013a] discuss an appli-
cation of Boolean games to the charging of electric vehicles
where some vehicles are not allowed to charge at certain time
intervals to avoid overloading. This is similar to our notion
of the PRINCIPAL inhibiting agents. Boolean games where
players have incomplete information about each other’s goals
have also been considered in the literature (e.g., [Clercq et al.,
2015; Ågotnes et al., 2013]).

2 Definitions and Preliminaries
Components of a Boolean Game. We follow [Wooldridge
et al., 2013] in defining a Boolean game. Let V =
{1, 2, . . . , n} be a collection of n agents. Let Φ be a finite
set of Boolean variables. γi is the Boolean function (a propo-
sitional formula over the variables in Φ) that represents the
goal of agent i (1 ≤ i ≤ n). Γi ⊆ Φ denotes the set of vari-
ables in γi. Φ is assumed to be partitioned into n sets Φ1, Φ2,
. . ., Φn, where Φi denotes the subset of variables controlled
by agent i (1 ≤ i ≤ n). Some of the subsets in the collection
may be empty; the corresponding agents do not control any
of the variables in Φ. Since the collection of subsets of Φ is
pairwise disjoint, each variable in Φ is controlled by exactly
one agent. We use B to denote the set {0,1}.

In addition to the set of agents V , it is assumed that there is
a special agent (external to the game) called the PRINCIPAL.
There is a special Boolean variable, called the inhibitor vari-
able, ψi for each agent i, 1 ≤ i ≤ n. (The inhibitor variables
are not in Φ.) For any agent i, the PRINCIPAL can set ψi to 0
to inhibit agent i. The behaviors of inhibited and uninhibited
agents are discussed later in this section.

Taxation queries and Nash equilibrium. The PRINCIPAL
can influence the goal of any agent i in two ways. Firstly, it
can set the inhibitor variable ψi. Secondly, as discussed by
Wooldridge et al. [2013], it can choose a taxation scheme
τ that specifies the tax values, denoted by τ(x = 0) and
τ(x = 1), for setting each variable x in Φ to 0 and 1 re-
spectively. While our results hold for any unambiguous taxa-
tion scheme (where assignments 0 and 1 have different costs),
for convenience, we will use the {0,1}-taxation scheme de-
fined by Wooldridge et al. [2013]. A taxation scheme τ is
a {0,1}-taxation scheme if for all x ∈ Φ and b ∈ B, (i)
τ(x = b) ∈ {0, 1} and (ii) τ(x = b) = 1− τ(x = ¬b).

Our algorithms for goal inference rely on taxation queries.
Formally, a taxation query q is a pair (I, τ), where I is the
inhibition vector that specifies the value of the inhibitor vari-
able ψi for each agent i and τ is the taxation scheme. For each
taxation query q = (I, τ), the response of an agent i is to set
each variable in Φi to 0 or 1. The cost for agent i is the sum
of the tax values over all the variables in Φi. Each agent i sets
the variables in Φi in the following manner.

(a) If agent i is inhibited by the PRINCIPAL, then the agent
sets each variable in Φi to the value with the lower tax.

(b) If agent i is not inhibited by the PRINCIPAL, then it pro-
ceeds as follows.
(i) Agent i always prefers assignments to the variables in Φi

that satisfy the goal γi over those which don’t satisfy the goal
(given other agents’ assignments).
(ii) When there are two or more assignments that satisfy the

goal, the agent prefers one with the minimum cost. (If there
are two or more minimum cost assignments that satisfy the
goal, the agent chooses one of them arbitrarily.)
(iii) If none of the assignments to the variables in Φi satis-

fies the goal γi, then agent i chooses a (non-satisfying) as-
signment with the minimum cost.

Definition (Nash Equilibrium). An assignment to the vari-
ables in Φ is a pure Nash Equilibrium (NE) if no agent i has
an incentive to unilaterally change the assignment it has cho-
sen for the variables in Φi.

Response to a taxation query. For each taxation query q,
if the agents reach an NE, the PRINCIPAL receives a response
consisting of two items: (i) for each uninhibited agent i,
whether i achieved its goal and (ii) the value assigned to each
variable x ∈ Φ. If there are two or more equilibria for a tax-
ation query, the agents may choose any one of them. If there
is no NE, the system produces the response “No equilibrium”
and does not provide any other information.

We now present examples to illustrate the above concepts.

Example 1. Consider a Boolean game with two agents
(Φ = {x, y}), and Φ1 = {x} and Φ2 = {y}. Let γ1 = x ∨ y
and γ2 = x ⊕ y, where ‘⊕’ is the exclusive-or operator. Let
the PRINCIPAL choose the following {0,1}-taxation scheme
τ : τ(x = 1) = τ(y = 1) = 0. (Thus, τ(x = 0) = τ(y =
0) = 1.) We consider two inhibition vectors with the taxation
scheme τ to show that they may lead to different NE.
(i) Suppose the PRINCIPAL does not inhibit either of the
agents. The assignment x = y = 0 is not an NE for this
setting since agent 1 has the incentive to change x to 1 to
achieve its goal. Likewise, neither of the two assignments



(x = 0, y = 1) and (x = 1, y = 1) is an NE; in the former,
agent 1 has an incentive to change x to 1 to reduce its cost
while in the latter, agent 2 has an incentive to change y to 0
to achieve its goal. However, the assignment (x = 1, y = 0)
is an NE for this setting.
(ii) Suppose the PRINCIPAL inhibits only agent 2. Since agent
2 is inhibited, it sets y to 1 as that choice makes the cost of
agent 2 to be zero. Given agent 2’s choice for y, agent 1
achieves its goal by setting x = 1 since that choice incurs
the minimum cost (namely, zero). Thus, the only NE for this
situation is (x = 1, y = 1), which is different from the one
where neither agent is inhibited. �

Example 2: The purpose of this example is to show that
there are Boolean games which have no NE for some taxation
schemes. The three agent game is defined in Table 1. Suppose

Agent Goal Control set
1 x1 ∨ x3 Φ1 = {x1}
2 x1 ∨ x2 Φ2 = {x2}
3 x2 ∨ x3 Φ3 = {x3}

Table 1. A game without a NE for some taxation schemes.

the PRINCIPAL chooses the taxation query q which does not
inhibit any agent and uses the following taxation scheme: for
each variable xi, τ(xi = 0) = 0 and τ(xi = 1) = 1, 1 ≤ i ≤
3. The reader can verify that none of the 8 possible choices of
values for the three variables is an NE. Thus, there is no NE
for this example. �

Statement of the Goal Inference Problem. The
PRINCIPAL knows the number of agents n and for each
agent i, the sets Φi and Γi (i.e., the set of variables used in
the goal γi). The PRINCIPAL’s objective is to infer the goal
function γi of each agent i. (a) To that end, the PRINCIPAL
issues taxation queries to the system a number of times.
(b) For each query, the principal receives a response as
described earlier. (c) The PRINCIPAL should use as few
queries as possible to infer all the goals.
Challenges in developing goal inference algorithms. Al-
gorithms to infer agents’ goals must deal with two primary
challenges. First, such an algorithm must avoid using queries
for which there is no NE. Second, for a chosen taxation query,
there may be multiple equilibria and the agents may arbitrar-
ily choose one of them. Thus, the algorithm must be able to
extract useful information regardless of which NE is chosen.
We now present an example to illustrate this situation.
Example 3. This example shows that a Boolean game may
have multiple equilibria. The game has two agents and
Φ = {x1, x2}. Each agent i controls xi. Their goals are
identical: γ1 = γ2 = x1 ↔ x2. Suppose both agents are
uninhibited. It is easy to see that for any taxation scheme,
x1 = x2 = 0 and x1 = x2 = 1 are both Nash equilibria. In
both cases, each agent’s goal is satisfied. Further, if agent i
changes the value of xi, then it will not achieve its goal. For
every taxation scheme, if the agents choose x1 = x2 = 0
as the response, then the PRINCIPAL will never know the re-
sponse for other assignments. Thus, an inference algorithm
must carefully choose inhibition vectors. �

2.1 Additional Definitions
Definition 1 (Zero cost assignment). Given a {0,1}-taxation
scheme τ and agent i, the zero cost assignment with respect
to a set Xi ⊆ Φi of variables is obtained by assigning for
each x ∈ Xi the value b ∈ B such that τ(x = b) = 0. (Thus,
the total cost of this assignment over all the variables in Xi

is zero.)

The following definition of a goal overlap graph plays an
important role in our inference methods.

Definition 2 (Goal overlap graph). For any Boolean game,
the goal overlap graph GO(V,E) is an undirected graph
constructed as follows. Each node in V represents an agent.
For any two distinct agents i and j, if Γi ∩ Γj 6= ∅, then E
contains the edge {i, j}.

We assume that the reader is familiar with graph theoretic
concepts such as independent set and (node) coloring (see
e.g., [West, 2003]). The smallest integer k for which a graph
G is k-colorable is called its chromatic number χ(G). In
any valid k-coloring, the set of nodes which are assigned the
same color constitute a color class. Each color class induces
an independent set in G. Thus, a valid k-coloring of G parti-
tions the node set V into k independent sets.

A Preliminary Lemma. A useful property of {0,1}-
taxation queries for which there is an NE is shown below.
(The proof is omitted due to space reasons.)

Lemma 1. (Control of variables using taxation queries)
Suppose there is at least one NE for a {0,1}-taxation query.
Then, the following statements hold for every agent i in every
NE. (1) If agent i is inhibited, then i chooses the zero cost as-
signment with respect to the set of variables Φi. (2) If agent
i is uninhibited, then i chooses the zero cost assignment with
respect to the set of variables Φi − Γi.

3 Existence of Equilibria Under Taxation
Schemes with Inhibition

In this section, we establish necessary and sufficient con-
ditions for the existence of Nash equilibria under taxation
schemes that inhibit certain agents.

A sufficient condition for NE. Our sufficient condition can
be stated formally as follows.

Theorem 1. Consider a Boolean game with goal overlap
graph GO(V,E). Let W ⊆ V be any nonempty indepen-
dent set of GO. Let an agent be uninhibited if and only if it
belongs to W . For every {0,1}-taxation scheme τ under this
setting, the following results hold.

1. (Existence) There exists an NE.
2. (Consistency) In all the NE, the outcomes are identical;

that is, for any agent i and any pair of NE E1 and E2, agent
i achieves its goal in both E1 and E2 or does not achieve
its goal in both E1 and E2.

3. (Ability to evaluate) For every agent i ∈ W , it is possible
to evaluate whether its goal is satisfied by the zero cost
assignment with respect to the set of variables Γi.



Proof (sketch). For space reasons, we will only sketch the
proof for Part 1 of the theorem. We construct an assign-
ment α of 0/1 values to the variables in Φ and prove that it
corresponds to an NE. First, for any inhibited agent i (i.e.,
i ∈ V −W ), we choose the zero cost assignment with respect
to Φi. Now, consider each uninhibited agent i (i.e., i ∈ W ),
and let i choose the zero cost assignment with respect to the
variables in Φi − Γi. It can be shown that for each agent
i, such an assignment sets each variable x ∈ Γi − Φi (which
are controlled by agents other than i) to the value of zero cost.
Now, agent i considers each combination of values to the vari-
ables in Φi ∩ Γi. If none of these combinations satisfies the
goal γi, it chooses the zero cost assignment with respect to
Φi ∩Γi. Otherwise, it chooses an assignment that satisfies its
goal and has the lowest cost among all such assignments. It
can be shown that this assignment is an NE.

A necessary condition for NE. In proving Part 1 of The-
orem 1, we assumed that the uninhibited agents form an in-
dependent set in the goal overlap graph and that some agents
are inhibited. Here, we point out that these two assumptions
are necessary to ensure the existence of an NE.

Proposition 1. There are Boolean games that satisfy the fol-
lowing properties: (i) If the set of uninhibited agents do not
form an independent set in the goal overlap graph, then there
is no NE for any taxation scheme. (ii) If no agent is inhibited,
then there is no NE for any taxation scheme.

Proof sketch. We use the same Boolean game to prove
both parts of this result. Consider a game with two agents
denoted by 1 and 2. Let Φ = {p, q} denote the set of vari-
ables. Further, let Φ1 = {p} and Φ2 = {q}. Let γ1 be
given by p ↔ q and γ2 be given by ¬(p ↔ q). Thus,
Γ1 = Γ2 = {p, q}. Assume that neither of the agents is
inhibited. It can be seen that the set of agents {1, 2} does not
form an independent set. A simple case analysis can be used
to argue that regardless of the taxation scheme, there is no NE
for this system. The result of Part (ii) also follows since in the
above example neither of the agents is inhibited.

Proposition 1 points out that there are games in which if the
uninhibited agents do not form an independent set in the goal
overlap graph, no taxation query has an NE. Therefore, tax-
ation queries in which uninhibited agents do not form an in-
dependent set may be wasteful. Moreover, Theorem 1 points
out that for any game and taxation scheme, if the uninhibited
agents form an independent set, then every taxation query has
an NE. Accordingly, our goal inference algorithms choose
such taxation queries.

Ability to query many agents simultaneously. Our algo-
rithms reduce the number of taxation queries by querying
many agents simultaneously. The following lemma shows
how this can be done when the uninhibited agents form an
independent set in the goal overlap graph. (The proof is omit-
ted for space reasons.)

Lemma 2. (Simultaneous querying) Consider a Boolean
game with goal overlap graph GO(V,E). Further, let W ⊆
V be a nonempty independent set in GO. Let an agent be un-
inhibited if and only if it belongs to W . There exists a {0,1}-
taxation scheme τ such that for every agent i ∈ W and any

given assignment gi for the variables in Γi, one can decide
whether gi satisfies agent i’s goal γi using τ .

4 Goal Inference Algorithms
SupposeA is an algorithm that learns a Boolean function f of
r variables using an oracle in the following manner. For each
input α to f , suppose the oracle produces the value f(α). Al-
gorithm A infers the function f from the values provided by
the oracle. We now explain how a Boolean game can simulate
an oracle that provides the value f(α) for each assignment α
to the variables of f .

Consider the Boolean game where there is only one agent
whose goal f is unknown. The variables of f are the variables
in the game and the single agent controls all the variables. For
this game, any input α to the function f can be converted into
a {0,1}-taxation query q = (I, τ) as follows. The inhibition
vector I of q does not inhibit the agent. If α sets a variable
x to the Boolean value b, then the {0,1}-taxation scheme τ
sets τ(x = b) = 0. This ensures that α is the zero cost
assignment under this taxation scheme. Since the uninhibited
set consisting of a single agent is trivially an independent set,
by Theorem 1, there is at least one NE for the taxation query
q. Moreover, by Part (3) of Theorem 1, no matter which NE is
reached, we can obtain the value of the goal function f for the
zero cost assignment α. Thus, the Boolean game simulates
the oracle that provides the value f(α) for the input α. In this
manner, the Boolean game in conjunction with Algorithm A
can be used to infer the function f . Thus:
Proposition 2. If there is an algorithm to learn a Boolean
function f using β queries to an oracle, then there is an algo-
rithm that infers the goal function f using β {0,1}-taxation
queries.
Simultaneous inference of multiple goals. Suppose we
have a set of m agents in a Boolean game such that the goal
overlap graph for these agents is an independent set. Suppose
for each goal function γi, we have an algorithm that can learn
γi using qi queries to an oracle. As discussed above, each
of these queries can be translated into a {0,1}-taxation query.
Further, using Lemma 2, the {0,1}-taxation queries for the
m agents can be combined into a single {0,1}-taxation query
for the Boolean game. Since the agents form an independent
set in the goal overlap graph, by Part (3) of Theorem 1, we
can obtain the values of all the goal functions from the sin-
gle taxation query. Thus, if q∗ = max{q1, q2, . . . , qm}, then
the number of {0,1}-taxation queries used to infer all the m
goal functions is q∗. This is an improvement over the simple
method of inferring goals one at a time, for which the number
of {0,1}-taxation queries used is

∑m
i=1 qi; in the worst-case,

this sum can be as large as mq∗.
We can extend the above idea of simultaneous inference to

an arbitrary Boolean game as follows. LetGO denote the goal
overlap graph for the game. Let χ denote the minimum num-
ber of colors needed to obtain a node coloring of GO. Recall
from Section 2 that each of the χ color classes forms an inde-
pendent set. As discussed above, we can infer the goals of all
the agents in a color class simultaneously. If q∗ denotes the
maximum number of {0,1}-taxation queries used to infer the
goal of any agent, then the number of {0,1}-taxation queries



used by this coloring-based method is at most χq∗. We state
this result formally below.

Proposition 3. Let GO denote the goal overlap graph for
a Boolean game and let χ denote the chromatic number of
GO. Let q∗ denotes the maximum number of {0,1}-taxation
queries used to infer the goal of any agent. Then, the number
of {0,1}-taxation queries used to infer the goals of all the
agents is at most χq∗.

Computing the chromatic number of an undirected graph is
an NP-hard problem [Garey and Johnson, 1979]. In practice,
one can use heuristics to obtain node colorings with a small
number of colors. For example, any graph whose maximum
node degree is ∆ can be efficiently colored using ∆+1 colors
using Brooks’ theorem [West, 2003]. Such a method is useful
when the maximum node degree is small.

Special classes of Boolean functions. Here, we present
inference algorithms when the goals of all the agents are
from special classes of Boolean functions. For these classes,
the goal inference algorithms use only a small number of
{0,1}-taxation queries. In particular, we consider two special
classes, namely threshold functions and symmetric func-
tions. We begin with the definitions of these classes of func-
tions (see, e.g., [Kohavi, 1970; Crama and Hammer, 2011]).
For any Boolean function with Boolean inputs, the number of
1’s in the input is called the Hamming weight of that input.

Definition 3. Let f(x1, x2, . . . , xr) be a Boolean function of
r Boolean variables. Function f is symmetric if the value of
f depends only on the Hamming weight of the input.

Example 4. Consider the Boolean function f(x1, x2, x3)
= x1 ⊕ x2 ⊕ x3, where ‘⊕’ is the exclusive-or operator. This
function is symmetric since it has the value 1 iff the Hamming
weight of the input is odd. �

Definition 4. Let f(x1, x2, . . . , xr) be a Boolean function
of r Boolean variables. For each integer k ≥ 0, f is a k-
threshold function iff the value of f is 1 when the Hamming
weight of the input is at least k.

Thus, any k-threshold function is also a symmetric func-
tion. We note that the 0-threshold function is the constant
function which has the value 1 for all inputs. If a function f
with r inputs is the constant function which has the value 0
for all inputs, we will regard f as the (r + 1)-threshold func-
tion. For space reasons, we will discuss only the inference
algorithm for threshold functions; a similar algorithm can be
designed for symmetric functions.

Inferring threshold functions. Suppose the goal of each
agent i in a Boolean game is the ki-threshold function for
some unknown integer ki, 0 ≤ ki ≤ |Γi| + 1. The objec-
tive of the inference problem in this case is to determine the
value of ki for each agent ai, 1 ≤ i ≤ n. The algorithm that
learns the threshold value of a single agent through queries
uses a simple binary search over the range [0 .. r + 1], where
r is the number of inputs to the function; thus, the number of
queries used is O(log r). Each query specifies an input with
a certain Hamming weight, determined by the binary search
procedure. Combining this binary search algorithm with the
coloring of GO and simultaneous inference of thresholds of

Algorithm 1: Inference algorithm for threshold functions.

1 Construct the goal overlap graph GO(V,E).

2 Obtain an optimal node coloring for GO. Let χ denote
the number of colors used and let V1, V2, . . ., Vχ
denote the color classes themselves.

3 for j = 1 to χ do
4 Inhibit every agent in V − Vj .
5 Using a simultaneous binary search over the agents

in Vj , get the threshold of each agent in Vj .
6 end
7 Output the threshold value of each agent.

all the agents in a color class (as discussed above), we obtain
the inference procedure which is shown in pseudocode form
as Algorithm 1.

Let Γ∗ denote a set of maximum cardinality among Γ1,
Γ2, . . ., Γn. Thus, the maximum number of taxation queries
used for any color class is O(log (|Γ∗|)). As a consequence,
the number of taxation queries used to infer all the threshold
values isO(χ log (|Γ∗|)). We state this result formally below.
Proposition 4. Suppose the goal of each of the n agents in
a Boolean game is a threshold function. Let χ denote the
chromatic number of the goal overlap graph and let Γ∗ de-
note a set of maximum cardinality among Γ1, Γ2, . . ., Γn.
The threshold values of all the agents can be inferred using
O(χ log (|Γ∗|)) taxation queries.

5 Experimental Results
The aim of the experiments is to study two aspects: (a) how
the coloring idea reduces the number of queries (compared
to inferring the goals one node at a time) and (b) scalabil-
ity of the approach. Our experimental procedures and results
discussed below are for goals which are threshold functions.
We use SEQ to denote the (sequential) querying algorithm
that infers goals one node at a time and CBQ to denote the
coloring-based querying algorithm.
Part (a): Effectiveness of querying using node coloring.
We ran an extensive set of experiments creating a large num-
ber of networks and agents’ goals by varying the number of
nodes, the minimum degree, the number of variables in an
agent’s goal controlled by the agent and by others and the
threshold. In each network, nodes represent agents and the
network itself represents the goal overlap graph. We ensured
this by creating for each edge {u, v}, a variable xu,v that ap-
pears only in the goals of u and v. To make the game general,
we also created other variables and generated control sets for
nodes so that for each node (agent) i, the sets Φi and Γi have
a nonempty intersection. For each agent i, we generated a
random threshold value in the range [1 .. |Γi|].

Let us first consider the SEQ approach which infers thresh-
olds one node at a time. For each node i, our program finds
its threshold by inhibiting all other nodes and constructing
{0,1}-taxation queries to do binary search over the possible
threshold values of i. Thus, we can compute the total number
of queries used by SEQ. Next, we generated a Brooks col-
oring of the graph using the simple greedy algorithm [West,



Figure 1. (a) The number of queries as a function of the number of agents for the SEQ algorithm (red and green lines) vs CBQ algorithm
(yellow and blue lines) for graphs with minimum node degree of 50 (red and yellow) and minimum degree of 100 (green and blue). (b) Time
in seconds as a function of the number of agents for graphs with minimum node degree of 50.

2003]. This method uses ∆ + 1 colors, where ∆ is the maxi-
mum node degree. Now, for each color class, we used queries
that simultaneously find the threshold values of all the nodes
in the color class. This allows us to compute the total number
of queries used by CBQ. For space reasons, we only present
a few results from our experiments. In Figure 1(a), we var-
ied the number of agents between 100 and 440 and considered
two values for the minimum node degree, namely 50 and 100.
We report the number of queries for the two algorithms and
the two minimum degree values. It is easy to see from Fig-
ure 1(a) that for the sequential algorithm (SEQ), the number
of queries increases with the number of agents (red and green
lines). However, in the coloring-based algorithm (CBQ), the
number of queries depends on the number of color classes,
which is closely related to the maximum degree and not to
the number of agents (yellow and blue lines). It is important
to note that in these experiments, the generation of the Brooks
coloring of a graph took on average only 3298 microseconds
for graphs with minimum degree of 50 and 5935 microsec-
onds for graphs with minimum degree of 100.

Part (b): Scalability of the coloring-based approach. In
Figure 1(b) we demonstrate the scalability of CBQ. We varied
the number of nodes between 1,000 and 36,000 and report the
computation time for graphs with minimum degree of 50 and
under the assumption that there are 20 processors that can
be used for running the searches of the same color class, in
parallel. It can be seen that the computation time of CBQ
increases only at a low rate with the number of agents, while
the time for the SEQ algorithm increases at a much higher
rate.

6 Inference with Limited Information
Here, we observe that inference is possible for some special
classes of goals even when the agents don’t indicate whether
they achieved their goals. For space reasons, we discuss only
an algorithm for inferring thresholds. A similar algorithm can
be designed when goals are conjunctions of literals.

Suppose the goal γi of each agent i is a threshold function
and the threshold value θi of agent i is in the range [1 .. |Γi|].
We also assume that of the |Γi| variables used in γi, at least
q ≥ 1 variables are also in Φi; that is, q = |Γi ∩ Φi| ≥
1. For simplicity, we will discuss the algorithm for inferring
the threshold θi, assuming that all other agents are inhibited.

(The algorithm can be extended to simultaneous inference of
goals using the idea of coloring.) The steps are as follows.
1. Issue a {0, 1}-taxation query where τ(x = 1) = 1 for
all the variables. From the resulting assignment, find the the
number ` of variables in Γi ∩ Φi which are set to 1. If ` ≥ 1,
then we conclude that the threshold of agent imust be ` (since
this is the minimum cost for achieving the goal γi) and stop.
2. (Here, the value of ` from Step 1 is zero; that is, q < θi ≤
|Γi|.) Consider the variables in Ai = Γi − Φi. For each j,
1 ≤ j ≤ |Ai|, let the {0, 1}-taxation query Ij be constructed
as follows: (i) choose an arbitrary subset A′ of j variables
from Ai and (ii) for each variable x in A′ let τ(x = 1) = 0
and for all other variables, let τ(x = 1) = 1. Using these
queries, find the smallest j (using binary search) such that for
the query Ij , the response sets all the variables in Γi ∩ Φi to
1. Then, it can be seen that the threshold value θi = q + j.

When the response doesn’t indicate whether agents
achieved their goals, one cannot distinguish between the
threshold value 0 (i.e., the goal function has the value 1 for all
inputs) and threshold value∞ (i.e., the goal function has the
value 0 for all inputs). In both cases, regardless of the taxa-
tion query, the uninhibited agent i would set all the variables
in Φi to the value of minimum cost and no useful conclusion
can be drawn from the outcome.

7 Future Work
It will be useful to develop inference algorithms for other goal
functions. While we established upper bounds on the number
of queries used for inference, it will be of interest to develop
appropriate lower bounds. Finally, it is also of interest to
identify other classes of goal functions that can be inferred
with limited information.
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Wiebe Van Der Hoek, and Michael Wooldridge. Verifi-
able equilibria in Boolean games. In Proc. of AAAI, pages
689–695, 2013.

[Angluin and Slonim, 1994] Dana Angluin and Donna K.
Slonim. Randomly fallible teachers: Learning monotone
DNF with an incomplete membership oracle. Machine
Learning, 14(1):7–26, 1994.

[Bonzon et al., 2007] Elise Bonzon, Marie-Christine
Lagasquie-Schiex, and Jérôme Lang. Dependencies be-
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