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Summary

Trade and transport of goods is widely accepted as a

primary pathway for the dispersal of invasive species. A

temporal network-based approach is used to model market-

to-market seasonal flow of agricultural produce and exam-

ine its role in pest spread. Through dynamical analysis

of the network, we apply it to study the role of trade

in the spread of a major pest of tomato, Tuta absoluta.

Network analysis reveals that the roles of nodes as sources

or hubs of spread changes with season, and hence makes

the network more vulnerable to attacks. We apply a novel

ranking-based inference approach to show that tomato

trade is a driving factor in the rapid spread of this pest.

Background

Trade of agricultural commodities is a quintessential com-

ponent of our food systems. However, global trade in-

creases the risk of rapid spread of invasive species and

bio-terrorism, similar to spread of infectious diseases in

human and animal populations. Not much is understood

as regards to the role of human mediated pathways (such

as trade and travel) in preventing introduction and miti-

gating immediate impact. See [2, 4] for further discussion

on this topic.

We develop an integrated data-driven methodology for

synthesizing realistic spatio-temporal networks of seasonal

agro-products between major markets [6] from diverse,

multi-type, and noisy datasets. We illustrate the method-

ology by developing a spatio-temporal domestic tomato

trade network in Nepal and investigate its role in the

spread of Tuta absoluta, a devastating pest of the tomato

crop [1]. Through dynamical analysis of the networks

and a novel rank-based inference approach, we show that

tomato trade has facilitated the rapid spread of the pest

in the region. Further, we analyze the spatio-temporal

properties of the flow networks, identifying important

actors in the market network that facilitate spread and

establishment of the pest.

Network construction. We model the flow of agricul-

tural produce among major wholesale markets using a

doubly constrained gravity model. The total outflow from

a market depends on the amount of produce in its sur-

rounding regions, and the total inflow is a function of the

population it caters to and the corresponding per capita

income. The details and justification for the assumptions

are provided in Venkatramanan et al. [6]. The flow also

depends on the time taken to travel between the mar-

kets. Based on the physiography, districts of Nepal are

partitioned into three regions, namely Terai, Mid Hills

and High Hills (see Figure 1a). Due to altitude and tem-

perature variations, the tomato production season varies

among these regions. Production in the Mid Hills and

High Hills is largely restricted to the summer months of

June to November (referred to as season S1), while Terai

region produces during the winter months of December

to May (referred to as season S2). The nodes of the flow

network are the major markets, 69 in all. District level

production and population data is distributed to each

node [6]. We modeled the total inflow into a market as a

product of the population catered to by the market and a

function of the average per capita income associated with

the market.

Results

Role of trade in pest spread. We used a discrete-

time SI (Susceptible-Infected) epidemic model on directed

weighted networks to model pest dispersal. A node i in

state I infects each of its out-neighbors j in the network

with probability proportional to the flow at each time

step t. The model is based on two assumptions: (i) an

infected node remains infected and continues to infect

its neighbors and (ii) the chance of infection is directly
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Figure 1: The physiographic division of Nepal and how it affects trade flows during different seasons is shown. Our

analysis shows that a hub or a source in one season can be a sink in another season, making it not only vulnerable to

attacks in one season, but also influencing other nodes in the following season.

proportional to the volume traded. We adopt the dynamic

message passing algorithm [3] to estimate the probabil-

ity of infection for each node at time t and given initial

condition. The experiment was setup under the premise

that T. absoluta was first introduced to the Kathmandu

valley, based on expert opinion. Given the pest reports,

we evaluated our model based on the following backward

inference problem: for an observation of node states at

time t, what is the most likely origin of invasion? (also

known as the source detection problem [5]). We examined

the likelihood of markets or regions being the source nodes,

and in particular, we compare this with the likelihood of

the region around Kathmandu being the source. Our re-

sults show that Kathmandu and nearby markets are the

top likely sources of invasion [6].

Sources, sinks and hubs Given the flow network, we

define the projected flow network as follows: For each

edge (a, b) of the road network, w(a, b) is the sum of all

flows Fij of FN where the identified shortest path be-

tween i and j contains edge (a, b) and the flow direction

is from a to b. The final flow on (a, b) is |w(a, b)−w(b, a)|
with direction a → b if w(a, b) ≥ w(b, a), or b → a oth-

erwise. To identify sources (high outflow), sinks (high

inflow) and hubs (high inflow and outflow), we define the

parameter h(v) = 4
I′
vO

′
v

(I′
v+O′

v)
2 , where I ′v and O′

v are the

net inflow and outflow at v in the projected flow net-

work. A node is a perfect source or sink if h(v) = 0. The

hub score of a node v is computed as the product of the

town/municipality population and h(v).
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