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Summary

Inferring the parameters of networked dynamical systems

is currently a popular research topic. In a typical setting,

model parameters are estimated from passive observations

over which the user has no control. Here, we consider the

problem of determining the local functions of a dynamical

system by actively interacting with the system. The user

submits queries to the system and infers the model from

the outputs. We develop tight bounds on the number of

queries needed, complexity results for producing optimal

query sets and efficient algorithms that produce near-

optimal query sets for several classes of deterministic and

stochastic dynamical systems.

Background

Inferring unknown parameters of networked systems is

currently a popular research area [5–7]. Here, we consider

networked Boolean dynamical systems of the following

general form. A Graph Dynamical System (GDS) S
over {0, 1} is a pair (G,F), where (a) G(V,E) is an undi-

rected graph, and (b) F = {f1, f2, . . . , fn} is a collection

of local functions, with fi being associated with node

vi. Each node of G has a state value from {0, 1}. The

inputs to function fi are the state of vi and those of the

neighbors of vi in G, and its output is the state of vi. At

any time t, the configuration C of a SyDS is the n-vector

(st1, s
t
2, . . . , s

t
n), where sti ∈ B is the state of node vi at time

t (1 ≤ i ≤ n).

In this work, we study inference problems where the

user has control over what information is extracted from

the system through queries (Figure 1). The algorithm

gives a set of configurations (or queries) to the system

and infers properties using the system’s responses. We

study two query modes, namely batch and adaptive,

that differ in their degrees of control. Under the batch

mode, all the queries must be submitted together. Under
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Figure 1: A schematic of the active querying framework.

the adaptive mode, queries can be submitted in several

stages, and queries at a stage can depend on the answers

to previous queries.

Motivation for these problems comes in part from the

DARPA Next Generation Social Science (NGS2) Program,

where experimental data from social networks are used to

infer properties of predictive models. Our work is similar in

spirit—but quite different with respect to problem domain

and results—from some recent work (e.g. [6]) where queries

are used to infer users’ choices from a finite set of ranked

options.

Here, we summarize some of our recent work on in-

ference of GDS by active querying [1–3]. These papers

consider several classes of deterministic and stochastic

GDSs. In each case, the focus is on developing (i) tight

bounds on the number of queries required and (ii) efficient

algorithms to obtain near-optimal query sets. To this end,

we exploit well-studied graph theoretic problems such as

coloring (both vertex and edge) and probabilistic meth-

ods such as Lovász local lemma, thus highlighting links

between network structure and dynamics.

Deterministic GDS: Threshold and Symmetric local

functions

We consider two classes of local functions, namely thresh-

old and symmetric functions. They are defined below.

(i) Threshold functions: The local function fv associ-
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ated with node v of a SyDS S is a tv-threshold function

for some integer tv ≥ 0 if the following condition holds:

the value of fv is 1 if the number of 1’s in the input to fv

is at least tv; otherwise, the value of the function is 0.

(ii) Symmetric functions: A local function fv at node

v is symmetric if the value of the function depends only

on the number of 1’s in the input. Clearly, threshold

functions are a special case of symmetric functions.

We have developed algorithms for generating query

sets under both batch and adaptive modes to infer local

functions of dynamical systems [3]. In particular, for

threshold dynamical systems, the objective is to infer the

thresholds tv of all vertices. Our results under the batch

and adaptive modes are summarized below.

Batch mode. The following results apply to the general

case of symmetric functions. We showed that a complete

query set must contain at least ∆ + 2 queries, where ∆

is the maximum degree of the graph. This result uses

the fact that any vertex of degree ∆ has ∆ + 2 possible

threshold values. We developed an algorithm based on

coloring the vertices of the square graph G2, obtained by

adding to graph G, the edges between all distance-two

neighbors in G. The algorithm produces a complete query

set of size at most min{∆2, n+ 1}, where n is the number

of nodes in the graph. Our experiments on more than 20

real-world networks show that in practice, the algorithm

yielded query sets whose sizes are very close to the lower

bound. Using the Lovász local lemma, we also developed

a randomized algorithms with an asymptotically better

upper bound of O
(
∆(log ∆)2.5

)
[2].

Adaptive mode. We developed a greedy adaptive heuris-

tic based on binary search for inferring threshold values of

nodes. Our experimental results show that for most cases,

it significantly outperforms the batch mode algorithms [3].

We showed that for the special case when the underlying

network is a star graph on n nodes, the number of queries

required is Θ(log n).

Stochastic GDS: Independent Cascade model

Let G(V,E) be a directed network where every edge e ∈ E
is associated with a (transmission or influence) probabil-

ity pe > 0. In the independent cascade (IC) model, at

time t, a node v in state 0 is influenced independently by

each in-neighbor u which changed to state 1 at time t− 1

with influence probability p(u,v). A node in state 1 re-

mains in that state forever. Here, the aim is to obtain

provably good estimates of the edge probabilities by active

querying. Our results for the IC model are summarized

below.

For 0 < ε, δ < 1, we presented an (ε, δ)-approximation

algorithm to infer the edge probabilities of G for the IC

model [1]. Formally, our algorithm ensures that for every

edge e, the probability that the estimated probability p̂e

differs from the actual probability pe by more than εpe is

at most δ. This approximation relies on two algorithmic

ideas. First, it uses a stopping criterion for Monte Carlo

sampling developed in [4]. Second, to minimize the number

of queries used, it uses a novel edge coloring formulation

(which we call fan-out edge coloring) for directed graphs.

In practice, edge sets of large social networks are parti-

tioned into classes such that all the edges in the same class

have the same transmission probability. We relied on this

idea to make our algorithms scalable to very large social

networks (with millions of nodes and hundreds of millions

of edges). In particular, we formulated a combinatorial

problem (which we call Minimum Cost Covering Sub-

graph) to identify a subgraph G′ with a small number

of nodes such that G′ contains at least one edge from

each class. We showed that this problem is NP-hard but

developed an approximation algorithm which provides a

performance guarantee of O(
√
k), where k is the num-

ber of classes. This allows us to work with the smaller

subgraphs generated by the approximation algorithm.
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