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Abstract

Developing techniques to infer the behavior of networked so-
cial systems has attracted a lot of attention in the literature.
Using a discrete dynamical system to model a networked so-
cial system, the problem of inferring the behavior of the sys-
tem can be formulated as the problem of learning the local
functions of the dynamical system. We investigate the prob-
lem assuming an active form of interaction with the system
through queries. We consider two classes of local functions
(namely, symmetric and threshold functions) and two interac-
tion modes, namely batch mode (where all the queries must
be submitted together) and adaptive mode (where the set of
queries submitted at a stage may rely on the answers received
to previous queries). We develop complexity results which
suggest that, in general, the problem of generating query sets
of minimum size is computationally intractable. We present
efficient heuristics that produce query sets under both batch
and adaptive query modes. Our results show that a small num-
ber of appropriately chosen queries are provably sufficient to
learn all the node functions. We also present experimental
results to demonstrate the performance of our heuristics on
over 20 well known networks.

Introduction
Background and Motivation. Discrete dynamical systems
are used in a variety of settings to understand population-
level contagion dynamics in terms of individual (human)
agent behavior. Examples include the spread of health be-
haviors (Valente 2010) such as overdose prevention (Sher-
man et al. 2009); viruses like Ebola (Siettos et al. 2015); obe-
sity (Christakis and Fowler 2007); segregation (Schelling
1971); becoming a user of an online communications
tool (Karsai et al. 2014); coordination (Rosenthal et al.
2015); and financial contagions (Gai and Kapadia 2010).
The frameworks in these works and in ours here are network
representations of populations, where nodes and edges rep-
resent entities such as humans and pairwise interactions, re-
spectively. Each of the cited works can be viewed as captur-
ing influence through threshold models (Granovetter 1978;
Schelling 1978), where a node vi contracts a contagion if at
least a particular number of its neighbors has already con-
tracted it. This number for vi is called its threshold ti. We
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are interested in complex contagions (Centola and Macy
2007) that are characteristic of social contagions, where
agents need multiple reinforcing interactions to adopt a con-
tagion; i.e., for cases where ti ≥ 1. (Watts 2002) argues that
threshold models are used in a host of settings where incom-
plete information exists or when there is insufficient time to
make more deliberate decisions.

In particular, we note that small changes in the thresh-
olds of nodes can make large differences in population
dynamics. An example is provided in (Granovetter 1978),
where a change in one node’s threshold by a value of 1,
in an arbitrarily large graph, changes population-level col-
lective action from non-existent to full collective action.
Several works have used mined data to infer thresholds
for applications ranging from protests, to Twitter messag-
ing, to joining social media (González-Bailón et al. 2011;
Romero, Meeder, and Kleinberg 2011; Ugander et al. 2012);
see also (Easley and Kleinberg 2010). Importantly, in all
of these cases, heterogeneous (i.e., non-uniform) thresholds
among agents have been inferred. Thus, node thresholds
must be determined based on a node’s individual behavior,
its (local) neighborhood structure, and behaviors (and state)
of nodes in this neighborhood. Symmetric functions, which
generalize threshold functions, also serve as natural models
in game theoretic settings (Papadimitriou and Roughgarden
2003).

Some works have studied threshold inference in a pas-
sive setting (e.g., (Adiga et al. 2017)) where observations
are given and the problem is to infer thresholds from these
observations. In this work, we study the case where an al-
gorithm has control over what information it extracts from
the system via querying the system for desired information.
In particular, the algorithm gives a set of configurations (or
queries) to the system and infers the system properties based
on the observed outputs. We study two query modes, namely
batch and adaptive modes, that differ in their degrees of
control. Under the batch mode, all the queries must be sub-
mitted together. In the adaptive mode, queries can be sub-
mitted in several stages, and queries at a stage can depend
on the answers to previous queries, a strategy similar to that
used in games such as “Twenty question”1.

Our work is similar in spirit—but quite different in prob-

1See Wikipedia entry on this game.



lem domain and results—to some of the recent works on in-
ference (e.g. (Kleinberg, Mullainathan, and Ugander 2017)).
To the best of our knowledge, this is the first work which
approaches the problem of inference of dynamical systems
from a combinatorial and algorithmic perspective. In doing
so, we relate it to well-studied graph theoretic problems such
as coloring. The formulation also enables us to quantify rig-
orously the complexity of inferring such systems.

Summary of Results. Our focus is on the following prob-
lem: given the underlying graph of a dynamical system, con-
struct queries to identify all the local functions. The op-
timization goal is to minimize the number of queries. We
present both theoretical and experimental results as summa-
rized below.
1. We develop algorithms for generating query sets under
both batch and adaptive modes to identify local functions
of dynamical systems. As can be expected, adaptive query
mode can produce significantly smaller query sets compared
to the batch mode. We also show that if the goal is to find a
query set which can identify symmetric functions with high
probability, the size of the query set can be further reduced.
2. We prove lower bounds on the number of queries needed
under both batch and query modes. We also present com-
plexity results that point out the difficulty of efficiently gen-
erating small query sets.
3. We present an approximation algorithm that reduces the
size of a query set (or makes it compact) by eliminating re-
dundant queries and establish its performance guarantee.
4. We evaluate the proposed algorithms on a large number
of real-world and synthetic networks. For the batch mode,
one of our approaches based on greedy graph coloring gen-
erated query sets of minimum size for most of the real-world
networks. We also demonstrate the effectiveness of a simple
approach based on sampling queries from a particular distri-
bution followed by a compaction algorithm.
5. We develop a greedy adaptive heuristic based on binary
search and evaluate it by generating query sets for various
settings of networks and threshold assignments. Our results
show that for most cases, it significantly outperforms the
batch mode algorithms.

All proofs for propositions, lemmas, and theorems appear
in the supplement.

Related Work. There are several works on the passive mode
of inference. Many researchers have studied the problem of
learning automata; e.g., (Murphy 1996). (Kearns and Vazi-
rani 1994) study the problem of learning normal forms and
Boolean functions. Works such as (González-Bailón et al.
2011; Romero, Meeder, and Kleinberg 2011) infer thresh-
olds from social media data. Learning the source nodes of in-
fection for contagion spreading is addressed in (Zhu, Chen,
and Ying 2017). Many of these problems are formally hard
even for simple local functions. The work of (Adiga et al.
2017) provides several problems aimed at inferring thresh-
olds in threshold-based discrete dynamical systems.

Active querying is studied in (Kleinberg, Mullainathan,
and Ugander 2017) in the context of determining user
choices from a finite set of ranked options—the choice set
problem. The goal is to minimize the number of queries of

arbitrary subsets S of size k, of a universal set U , to learn a
user’s choice from among the elements of each set S. With
these results, the algorithm can then predict the user’s choice
for any subset S ⊆ U of size k. They show that this can be
accomplished with O(n log n) queries where n = |U |.

Although error-tolerant approaches for querying systems
are beyond the scope of this work, there are several works
that include allowance for errors in inferring system proper-
ties. These include (Valiant 1984; Juba 2016; He et al. 2016;
Zhang, Mathew, and Juba 2017; Kleinberg, Mullainathan,
and Ugander 2017).

There are several challenges in determining individual
node thresholds in realistic settings: (i) data are collected at
discrete time intervals (not continuously), (ii) there may be
time delay effects in agents observing their neighborhoods,
and (iii) inherent stochasticity (Valente 1996; Berry and
Cameron 2017). Practical guidelines and issues for threshold
measurement are discussed in (Berry and Cameron 2017).
Here, we investigate problems of inferring local functions
using rigorous formulations, supplementing them with ex-
perimental results from heuristics.

Synchronous Dynamical Systems (SyDSs)
Formal Definitions
Let B denote the Boolean domain {0,1}. A Synchronous
Dynamical System (SyDS) S over B is specified as a pair
S = (G,F), where (a) G(V,E), an undirected graph with
|V | = n, represents the underlying graph of the SyDS, with
node set V and edge set E, and (b) F = {f1, f2, . . . , fn} is
a collection of functions in the system, with fi denoting the
local function associated with node vi, 1 ≤ i ≤ n.

Each node ofG has a state value from B. Each function fi
specifies the local interaction between node vi and its neigh-
bors in G. The inputs to function fi are the state of vi and
those of the neighbors of vi in G; function fi maps each
combination of inputs to a value in B. This value becomes
the next state of node vi.

At any time t, the configuration C of a SyDS is the n-
vector (st1, s

t
2, . . . , s

t
n), where sti ∈ B is the state of node vi

at time t (1 ≤ i ≤ n). In a SyDS, all nodes compute and
update their next state synchronously.

Classes of Local Functions
We consider two classes of local functions, namely thresh-
old and symmetric functions. They are defined below.
(i) Threshold functions: The local function fv associated
with node v of a SyDS S is a tv-threshold function for some
integer tv ≥ 0 if the following condition holds: the value of
fv is 1 if the number of 1’s in the input to fv is at least tv;
otherwise, the value of the function is 0. Let dv denote the
degree of node v, and let tv denote the threshold of node v.
The number of inputs to the function fv is dv + 1. Thus, we
assume that 0 ≤ tv ≤ dv + 2. (The threshold values 0 and
dv + 2 allow us to realize local functions that always output
1 and 0 respectively.)
(ii) Symmetric functions: A local function fv at node v is
symmetric if the value of the function depends only on the
number of 1’s in the input. Thus, a symmetric function fv



with k inputs can be specified using a table with k+ 1 rows,
with row i specifying the value of the function when the
number of 1’s in the input to the function is exactly i, 0 ≤
i ≤ k. Note that each threshold function is also a symmetric
function.

We will use the term “symmetric SyDS” (“threshold
SyDS”) to refer to a SyDS whose local functions are all sym-
metric (threshold).
Example: Consider the graph of a threshold SyDS shown
in Figure 1. Suppose the local transition functions at each of
the nodes v1, v5 and v6 is the 1-threshold function and the
functions at v2, v3 and v4 are 2-threshold functions. Assume
that initially, v3 is in state 1 and all other nodes are in state
0. During the first time step, the states of nodes v1, v5 and v6

change to 1 since each of them has a neighbor (namely, v3)
in state 1. Also, the state of v3 changes to 0 since its thresh-
old is 2 and none of its neighbors is in state 1. The states of
v2 and v4 don’t change; they continue to be 0. During time
step 2, v2 and v3 change to 1 but v4 remains at 0. Once the
system reaches the configuration C = (1, 1, 1, 0, 1, 1) at time
step 2, it remains in that configuration forever; that is, C is a
fixed point for this system. �

v2

v1

v3

v6v5

v4 Initial Config.: (0, 0, 1, 0, 0, 0)
Config. at time 1: (1, 0, 0, 0, 1, 1)
Config. at time 2: (1, 1, 1, 0, 1, 1)

Note: Each configuration has the form (st1, s
t
2, s

t
3, s

t
4, s

t
5, s

t
6),

where sti is the state of node vi at time t, 1 ≤ i ≤ 6. The
configuration at time 2 is a fixed point.

Figure 1: An Example of a SyDS.

Additional Terminology: If a given SyDS can transition in
one step from a configuration C′ to a configuration C, then
C is a successor of C′ and C′ is a predecessor of C. Since
our local functions are deterministic, each configuration has
a unique successor; however, a configuration may have zero
or more predecessors. A fixed point is a configuration C for
which the successor is C itself.

Given a graph G(V,E) and a node vi ∈ V , the closed
neighborhood of vi, denoted by N [vi], is defined by N [vi]
= {vi} ∪ {vj : {vi, vj} ∈ E}. Thus, the inputs to the local
function fi at vi are the states of the nodes in N [vi].

Query Model
The general problem addressed in this paper is that of cor-
rectly identifying the local functions of a SyDS by query-
ing the system. We assume that the underlying network is
known. Each query specifies a configuration C and the re-
sponse from the system is the successor C′ of C. Since the
state of each node is either 0 or 1, each query q and the re-
sponse to q are bit vectors. We consider two query modes. In
the batch query mode, a user must submit all the queries at
the same time as a single batch. In the adaptive query mode,
a user may submit the queries in several batches; the queries
chosen in a batch may rely on the responses received from

the system for the previous batches of queries. As will be
seen, for threshold SyDSs, the adaptive query mode can sig-
nificantly decrease the number of queries. The following ad-
ditional definitions regarding queries will be used through-
out this paper.

Given a query q and a node vi, the score of q with respect
to vi, denoted by score(q,vi), is the number of nodes in the
closed neighborhood N [vi] of vi that are set to 1 by q. Thus,
score(q,vi) gives the number of 1’s in the input provided by
q to the local function fi at vi.

Definition 1 Let S be a symmetric SyDS. For any node vi,
let di denote the degree of vi.
(a) A query set Q covers a node vi if for each j, 0 ≤ j ≤
di + 1, there is a query q ∈ Q such that score(q,vi) = j.
(b) A query set Q covers a set B of nodes if Q covers every
node vi ∈ B.
(c) A query set Q is complete if it covers the node set V .

When a query set Q covers a node v, the local symmetric
function fv can be correctly inferred from the responses to
the queries in Q. Thus, complete query sets have the follow-
ing property.

Observation 1 Let S be a symmetric SyDS. If Q is a com-
plete query set for S, then each local function of S can be
determined given the successor of each query in Q.

Theoretical Results
In this section, we first present an algorithm for generating
query sets under the batch mode for symmetric SyDSs. We
then show that for threshold SyDSs, the number of queries
can be substantially reduced under the adaptive query mode.
We also establish lower bounds on the number of queries
needed under both modes. We present complexity results
that suggest that in general, generating complete query sets
of minimum size is computationally intractable. We also de-
velop an efficient heuristic to reduce the size of query sets
by eliminating redundant queries and prove its performance
guarantee.

Generating Query Sets Under the Batch Mode
We begin by defining the notion of a monotone query se-
quence. The sequence of queries constructed can be submit-
ted as a batch to learn all the local functions of a symmetric
SyDS. Using the notion of “sequence” allows us to point
out an interesting connection between the problem of iden-
tifying local symmetric functions and a variant of the node
coloring problem for the underlying graph.

Definition 2 (a) Given two queries q1 and q2, we use the
notation q1 ≤ q2 to mean that every bit which is 1 in q1 is
also 1 in q2.
(b) A query sequence 〈q1, q2, . . . , qr〉 is monotone if for each
i, 1 ≤ i ≤ r − 1, qi ≤ qi+1.
(c) Let S be a SyDS in which each local function is symmet-
ric and let M be a monotone query sequence. If M is also
a complete query set for S (i.e., each node v of S is covered
by M ), then M is a complete monotone query sequence.



Figure 2: Steps of the Algorithm ALG-MONOTONE-SEQ

Input: Graph G(V,E) of a symmetric SyDS S.
Output: A monotone complete query sequence M for S.
Steps:

1. Construct the graph G2(V,E′).

2. Use the algorithm of Theorem 1 to obtain a k-coloring of G2

where k ≤ min{∆2 + 1, n}.
3. Let C1, C2, . . ., Ck denote the color classes created in Step 2.

(Color class Cj consists of all nodes assigned color j, 1 ≤ j ≤
k.) Create the query sequence M = 〈q0, q1, . . . , qk〉 with k + 1
queries as follows.

(a) Query q0 is a bit vector where every element is 0.
(b) for j = 1 to k do

Create query qj by choosing the value 1 for all the
nodes in C1 ∪ . . . ∪ Cj and 0 for the other nodes.

4. Output the query sequence M .

We now present an algorithm to show that if the underly-
ing graph G has n nodes, then there is a monotone complete
query sequence M for S with at most min{∆2 + 2, n + 1}
queries, where ∆ is the maximum node degree of G. This
sequence of queries can be submitted as a batch to learn all
the symmetric local functions. To establish this result, we
recall the following definitions.
Definition 3
(a) Given an undirected graph H(VH , EH) and an integer
k ≥ 1, a k-coloring of H assigns a color from the set
{1, 2, . . . , k} to each node of H such that for each edge
{u, v} ∈ EH , the colors assigned to u and v are different.
(b) Given an undirected graph G(V,E), the square of G,
denoted by G2(V,E′), is an undirected graph on the same
vertex set V . The edge set E′ is defined as: {u, v} ∈ E′ iff
there is a path with at most 2 edges between u and v in G.

We will also use the following known result (West 2001).
Theorem 1 Let H(VH , EH) be a graph with maximum
node degree ∆H . Then, H can be colored efficiently using
at most ∆H + 1 colors.

Our algorithm ALG-MONOTONE-SEQ for generating a
monotone complete query sequence M for the given SyDS
S is shown in Figure 2. It is easy to see that the algorithm
runs in polynomial time. The following theorem shows its
correctness and estimates the number of queries generated.
Theorem 2 Let S be a symmetric SyDS whose graph
G(V,E) has n nodes and maximum node degree ∆. Algo-
rithm ALG-MONOTONE-SEQ (Figure 2) produces a mono-
tone complete query sequence M with at most
min{∆2 + 2, n+ 1} queries.

For some graphs with maximum node degree ∆, Al-
gorithm ALG-MONOTONE-SEQ may generate a query se-
quence with Ω(∆2) queries but it guarantees that the result-
ing query sequence is complete for a symmetric SyDS. For
graphs where ∆ ≥ (log n)2, the number of queries can be
reduced toO(∆1.5 log n), if we only need the query set to be
complete with high probability. This result is stated below.

Theorem 3 Let S be a symmetric SyDS with graphG(V,E)
where |V | = n and maximum node degree = ∆. A query set
Q of size O(∆1.5 log (n)) which is complete with probabil-
ity at least

(
1− 1

n

)
can be constructed for S.

Generating Query Sets Under the Adaptive Mode
For threshold SyDSs, the adaptive query mode can reduce
the number of queries significantly. To illustrate this, con-
sider a SyDS whose underlying graph is a star graph with
n nodes; that is, there is one node v1 with degree n − 1
which is the root of the tree and each of the other nodes v2

through vn is child of the root. As will be shown in the sec-
tion on lower bounds, in the batch mode, n + 1 queries are
necessary even for the star graph to identify all the thresh-
olds. However, under the adaptive mode, using the following
method, O(log n) queries are sufficient.

The idea is simple: use binary search to identify the
threshold of node v1 whose degree is n − 1 using O(log n)
queries. After this, the following 3 additional queries are
sufficient to identify the thresholds of the remaining n − 1
nodes: a query with all 0’s, a second query with all 1’s and
a third one in which v1 has the value 1 and all the remain-
ing nodes have the value 0. Thus, all the thresholds can be
identified O(log n) queries under the adaptive mode.

The above idea can be applied to a more general class
of graphs. Let a class of graphs with n nodes be called
(α, β)-simple, if at most α nodes have degree > β (the de-
gree may be Ω(n)) and all the remaining n − α nodes have
a degree of at most β, with α and β being constants inde-
pendent of n. Thus, each star graph belongs to the class of
(1, 1)-simple graphs. The following result shows the useful-
ness of the adaptive query mode for (α, β)-simple graph.
Theorem 4 For any threshold SyDS whose underlying
graph G belongs to the class of (α, β)-simple graphs,
O(log n) queries are sufficient in the adaptive mode to iden-
tify all the threshold values.

The above result can be used to establish a bound on the
number of queries under the adaptive mode for scale-free
graphs as stated below.
Theorem 5 For a threshold SyDS whose underlying graph
G(V,E) is scale-free with exponent γ ≥ 1, the thresholds
can be found using O

(
n

2
γ+1
)

queries under the adaptive
query mode.

Lower Bounds on Sizes of Query Sets
Here, we present lower bounds under batch and adaptive
query modes. We begin with a result that provides a lower
bound for any symmetric SyDS under the batch mode.
Proposition 1 Let S be a symmetric SyDS where the under-
lying graph G(V,E) has a maximum node degree ∆. Under
the batch query model, every complete query set must con-
tain at least ∆ + 2 queries.

As a simple consequence of the above proposition, the
following result points out that there are SyDSs with n nodes
for which every complete query set must have n+1 queries.
This lower bound matches the upper bound of n + 1 given
by Theorem 2 for all graphs.



Corollary 1 For a symmetric SyDSs whose underlying
graph is a clique on n nodes, every complete query set under
the batch mode must have at least n+ 1 queries.

We now establish a lower bound under the adaptive query
model to show that there are threshold SyDSs for which a
large number of queries are needed even under the adaptive
query mode. However, this result does not rule out the pos-
sibility of smaller query sets for special graph classes.
Theorem 6 For every n ≥ 1, there is a threshold SyDS
whose underlying graph is a clique on n nodes such that at
least n + 1 queries are necessary under the adaptive query
mode to correctly identify all the threshold values.

Complexity of Generating Small Monotone
Complete Query Sequences
Here, we present a result that provides an indication of the
difficulty of efficiently generating small query sets. In par-
ticular, we will show the NP-completeness of the following
problem.
Short Monotone Complete Query Sequence (SMCQS)
Given: The underlying graph G(V,E) of a SyDS S where
each local function is symmetric and a positive integer k.
Question: Is there a monotone complete query sequence Q
with at most k queries for S?
Theorem 7 Problem SMCQS is NP-complete.

Results for Query Set Compaction
Under the batch mode, after generating a complete set of
queries, it is useful to reduce the size of the set by elimi-
nating redundant queries. We refer to this as the Query Set
Compaction problem and its formulation is as follows.
Query Set Compaction (QSC)
Given: The underlying graphG(V,E) of a symmetric SyDS
S, a complete query set Q and an integer k ≤ |Q|.
Question: Is there a subset Q′ ⊆ Q such that (i) |Q′| ≤ k
and (ii) Q′ is also a complete query set for S?

The following result points out the intractability of QSC.
Theorem 8 (a) The problem QSC is NP-complete even
when the underlying graph has no edges. (b) Unless P =
NP, QSC cannot be approximated to within the factor
o(log n), where n is the number of nodes in the underly-
ing graph of the SyDS.

To complement the non-approximability result of the pre-
vious section, we present an efficient approximation algo-
rithm with a performance guarantee ofO(log n) for the QSC
problem. The idea is to use a reduction from the QSC prob-
lem to the well known Minimum Set Cover (MSC) prob-
lem (Garey and Johnson 1979). A (greedy) approximation
algorithm for MSC which provides a performance guarantee
of O(log n) for the MSC problem is well known (Vazirani
2001).

The steps of our approximation algorithm Approx-QSC
for QSC are shown in Figure 3. It can be seen that the ap-
proximation algorithm runs in polynomial time. The perfor-
mance guarantee provided by Approx-QSC is indicated in
the following theorem.

Input: The underlying graph G(V,E) of a symmetric SyDS S
and a complete query set Q.
Output: A subset Q′ ⊆ Q such that Q′ is also a complete query
set and |Q′| is as small as possible.
Steps:

1. To construct the base set X of the MSC instance, consider each
node vi; let di denote the degree of vi. Create a set Ai of di + 1
elements, given by Ai = {aik : 0 ≤ k ≤ di}, for vi. The set
X is given by X = ∪n

i=1Ai.

2. From each query qj ∈ Q, construct a subset Yj of X as follows.
Initially, Yj is empty. For each vi ∈ V , 1 ≤ i ≤ n, if qj sets k
of the inputs to vi to 1, then the element aik is added to the set
Yj .

3. Use the greedy algorithm (Vazirani 2001) to get an approximate
solution Y ′ to the resulting MSC instance.

4. Construct the query setQ′ by choosing the query corresponding
to each subset in Y ′ and output Q′.

Figure 3: Details regarding Algorithm Approx-QSC

Theorem 9 Algorithm Approx-QSC provides a perfor-
mance guarantee of O(log n) where n is the number of
nodes in the underlying graph of the SyDS.

Experimental Results
We performed extensive experiments on more than 20 di-
verse real-world and synthetic networks. They are listed in
Table 1 along with some of their properties. We present
representative results for selected networks, with other net-
works exhibiting the same behavior unless stated otherwise.

We studied three approaches for inferring thresholds, two
of which correspond to the batch mode and hence applicable
to symmetric SyDSs as well, and one being an adaptive ap-
proach. The first batch mode approach is based on coloring
G2 and the other is a random query approach based on The-
orem 3. In both these cases, we applied the compaction algo-
rithm (Figure 3) on the complete sets that were constructed.
Next, we propose a greedy algorithm for inferring thresholds
in the adaptive mode and evaluate its performance.

Our theoretical results indicate that both network struc-
ture and the threshold assignments influence the number of
queries required to infer the system. The experiments con-
ducted were designed to further explore these aspects.

Method 1: G2 Coloring Based Approach
We studied the performance of ALG-MONOTONE-SEQ
(Figure 2). The results of are in Table 2. For most real world
networks considered in this paper, it gives the best possi-
ble performance, i.e., nc(G2) is equal to ∆ + 1, the lower
bound on the size of complete set (Proposition 1). For syn-
thetic networks (random regular and Erdős-Rény graphs)
though, nc(G2) is significantly higher than ∆ + 1, yet much
lower than ∆2 + 1. The reader should note that the ob-
served performance is due to a combination of the structure
of G2 and the nature of the greedy coloring scheme. We ob-
serve that unlike the synthetic networks considered, most of
the real-world networks are scale-free with maximum de-
gree being much larger than average degree davg. This is



Table 1: Networks used in our experiments, their properties, and results of the different algorithms for inferring local functions
or thresholds. The networks are grouped by type: social online, friendship, co-authorship (collaboration) (Leskovec and Krevl
2014) and synthetic networks. To conserve space, we have provided range of values for some network families.

Network
(num. of

instances)

Properties Results
Query set size

Type n
avg. deg.
davg

max.
deg. ∆

Spec.
rad.
λmax

Meth. 1
nc(G

2)+
1

Meth. 3
t(v) =

d(v)+2
2

FB social media 43,953 8.30 223 39.7 225 53
p2p-gnutella04 hw connectivity 10,876 7.35 103 17.08 105 31
Enron email 33,696 10.73 1383 118.4 1385 624
Epinions online opinions 75,879 10.69 3044 246 3046 294
Slashdot0811 online 77,360 12.13 2539 250.3 2541 214
Slashdot0902 online 82,168 12.27 2552 252.6 2554 267
Wikipedia online voting 7,115 28.32 1065 138.2 1067 114

ca-astroph co-author 17,903 22.00 504 94.43 506 76
ca-condmat co-author 21,363 8.55 279 37.89 281 67
ca-grqc co-author 4,158 6.46 81 45.62 83 25
ca-hepph co-author 11,204 21.00 491 244.9 619 72
ca-hepth co-author 8,638 5.74 65 31.03 67 28
cit-hepph co-author 34,401 24.46 846 76.58 848 78
Clique synthetic 1000 999 999 999 1001 8
Rand. reg. A (10)∗ synthetic 1000 10,800 10,800 10,800 34-36,1001 Fig. 4(a)(0.0)
Rand. reg. B (10) synthetic 80,000 10,12 10,12 10,12 38 20 (avg)
Erdős-Rényi (10) synthetic 80,000 10, 12 25-28,27-32 11.1,13.04-13.09 36-38, 46-47 –

∗ Degrees are 10, 50, 100, 200, 250, 400, 500, 700, 800. For davg = 50, 100, nc(G
2) + 1 = 348-358, 988-996, and for greater davg,

nc(G
2) = 1000.

a possible reason for the superior performance of this ap-
proach. We also compared the results to the spectral radius
bound, that is, the number of colors needed to color G2 is
at most 1 + λ2

max (Miao and Fan 2014). It is a well-known
fact that

√
∆ ≤ λmax ≤ ∆, and for the real-world net-

works considered, λmax is indeed much less than ∆. How-
ever, despite this fact, we observe that λ2

max + 1 is much
larger than nc(G2) + 1 in these cases.
Compaction. We note that the query set generated by this
approach is already compact, i.e., no subset of queries can
be complete. We provide an intuitive explanation for this in
the supplement.

Method 2: Randomized Algorithm
In this approach, we use the method of Theorem 3 to con-
struct a complete set. The query set contains the configura-
tions of all zeros, of all ones and `∆ random queries where `
queries are sampled from distributions D(i/∆) for 1 ≤ i ≤
∆. Compared to Method 1, this is a very simple approach not
requiring construction of G2 or graph coloring. However, it
is not guaranteed that the constructed query set is complete
and therefore the process may have to be repeated a number
of times. However, as discussed below, with ` sufficiently
large, we can obtain a complete set in few repetitions. Fur-
ther, the resulting set, even though large, can be compressed
using the compaction algorithm.

We constructed 50 such query sets for three values of `
(2, 5 and 10) and checked if each of them is a complete set.
For ` = 2, out of the 50 sets none of them were complete.
However, for ` = 10, from 5 to 50 query sets turned out
to be complete sets depending on the network. We applied
the compaction algorithm on the complete sets generated by

Table 2: Results of Method 2.

Network
Query
set
size

%
Com-
paction

Network
Query
set
size

%
Com-
paction

FB 407 81 ca-grqc 153 81
p2p 159 84 ca-hepph 1201 75
Enron 2306 83 ca-hepth 140 78
Wikipedia 1420 86 cit-hepph 1240 85
ca-astroph 899 82 Rand. reg. A ≈ 5∆ 40
ca-condmat 393 85 – – –

the randomized algorithm. The results for ` = 10 are in Ta-
ble 2. The compaction ratio depends on the size of complete
set which was given as input. On an average, the combina-
tion of randomized algorithm and compaction gives query
sets of size around 1.5 to 2 times that of Method 1 (Table 1
(Meth. 1)). However, comparatively these are much easier to
generate.
Performance of compaction. We note that compaction of
query sets generated by Method 2 consistently yields 80%
reduction in the size of the query set (Table 2).

Method 3: Adaptive Algorithm
While the previous two methods correspond to the batch
mode, here we develop an adaptive algorithm to infer the
thresholds. We give an outline of the approach. The algo-
rithm description is in the supplementary material. For every
node, let tL(v) and tH(v) be the minimum and maximum
possible values of threshold that v can be assigned. These
values quantify the uncertainty about the threshold. The
threshold is said to have been inferred when tH(v) = tL(v).
In a query q, if score(q, v) falls in the range [tL(v), tH(v)−
1], then, the uncertainty reduces to either [score(q, v) +
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Figure 4: Experiments with 1000 node random k-regular
graphs. (a) The threshold of a node is randomly assigned an
integer in the interval

[
(k+ 2)(1− θ)/2, (k+ 2)(1 + θ)/2

]
.

The legend shows values of θ. (b) All nodes are assigned a
fixed threshold relative to k. The legend shows values of ti.

1, tH(v) − 1] or [tL(v), score(q, v)] depending on the state
observed in the successor configuration. In this heuristic,
we use a greedy adaptive approach where the current query
is constructed iteratively in the following way. To begin
with all nodes are in state 0. We first choose that vertex,
say vmax for which the threshold range is maximum. We set
exactly b(tL(v) + tH(v))/2c of nodes in its closed neigh-
borhood to state 1. This guarantees a reduction in the range
by half. In the next iteration, we ignore all nodes inG within
distance-2 of vmax and repeat this process. The query is fully
constructed there are no more vertices to consider. After
each query, the range [tL(v), tH(v) − 1] for every v is up-
dated based on its state in the successor. We terminate this
process when for all v, tL(v) = tH(v). The analysis of our
experimental results follows.
Influence of threshold values and ranges. In general, the
number of queries required is highly dependent on the pos-
sible threshold values the nodes can be assigned. We con-
ducted experiments in the following manner. Let 0 ≤ θ ≤ 1
be a real number. For a fixed value of θ, each node v was
assigned a threshold value uniformly at random from the in-
terval

[
(d(v) + 2)(1 − θ)/2, (d(v) + 2)(1 + θ)/2

]
. Note

that for θ = 0, the interval corresponds to the fixed thresh-
old of (d(v) + 2)/2 and for θ = 1, any value from 0
to d(v)+2 is possible. The results are in Figure 4(a) and 5(a)
for random k-regular and real-world networks respectively.
For the random-regular graphs, the number of queries (aver-
aged over 10 instances of graphs for each k) increases from
an order of log k to as high as n, the size of the graph. We
note that for k = n − 1, this is in accordance with The-
orem 6. For the real-world graphs, we see that increasing
the range of threshold has the effect of gradually increas-
ing the number of queries, but the number is less than 1.5∆.
In Figure 4(b), we investigate the influence that the thresh-
old value on query set size. Again, we considered random
k-regular graphs with varying k. Every node was assigned
the same threshold. We see that the number of queries re-
quired is maximum when the threshold is around ∆/2, and
it decreases as the threshold approaches either 0 or ∆.
Influence of network structure. The theoretical bounds de-
veloped in the previous sections provide bounds with respect
to size of the graph and maximum degree. Here, our ob-
jectives are two-fold. Firstly, we compare our adaptive ap-
proaches to the non-adaptive bounds, particularly the num-
ber of queries required relative to log ∆, ∆ and ∆2. Sec-
ondly, we investigate the effect of graph density and degree

distribution on the performance of the heuristic.
We note that graph density plays an important role in

the performance of the algorithm. First we will consider
the synthetic networks. In Figure 4(b), we see that for low
values of k the number of queries required is very small,
but it increases rapidly (for higher values of thresholds).
When the graph is sparse, for every node, the number of
nodes within distance two (k2+1 nodes) is small. Therefore,
for every query constructed by the heuristic, the uncertainty
range of around n/k2 nodes (the “vmax” vertices) is halved.
However, as k increases, this number decreases drastically.
Hence we see that the number of queries required increases.
However, as the graph density increases, the intersection of
neighborhoods of any two nodes is large which has the effect
of reducing the variation in the scores of nodes. Therefore,
particularly when the range of threshold values is limited,
the thresholds can be inferred with far fewer queries than for
sparser networks.
Progress towards inferring thresholds. In Figure 5(b), we
plot the accumulated threshold ranges for all vertices as the
algorithm moves from one query to the next. We note that
within one-tenth of the total query size, the total accumu-
lated threshold range decreases to 5% of its original value
for all the studied networks.
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Figure 5: Inferring thresholds for real-world net-
works. (a) Adaptive heuristic for varying threshold ranges.
(b) Progress made by the adaptive algorithm (Method 3) in
each query.

Future Work
In this paper, our focus was on learning the threshold and
symmetric functions of dynamical systems. One direction
for future work is to investigate other classes of functions.
Another direction is to explore the use of queries to infer
other components of a dynamical system such as the net-
work topology. A third direction is to extend the results for
other classes of dynamical systems.
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Learning the Behavior of a Dynamical System via a “20 Questions” Approach

(Supplementary Material)

This supplement provides proofs for many results mentioned in the main paper. (As some of the proofs involve long mathe-
matical formulas, this supplement has been formatted using the single column mode.)

Statement and Proof of Theorem 2
Statement of Theorem 2: Let S be a symmetric SyDS whose graph G(V,E) has n nodes and maximum node degree ∆.
Algorithm ALG-MONOTONE-SEQ (Figure 2) produces a monotone complete query sequence M with at most min{∆2 +
2, n+ 1} queries.

Proof: We first show that Step 2 of the algorithm can indeed colorG2 using at most min{∆2+1, n} colors. Since the maximum
node degree in G is ∆, each node v of G has at most ∆ neighbors and at most ∆(∆− 1) nodes at a distance of 2 from v. Thus,
the maximum node degree inG2 is at most ∆(∆−1)+∆ = ∆2. Hence, by Theorem 1,G2 can be colored using at most ∆2 +1
colors. Since G2 has n nodes, n colors are sufficient. Thus, G2 can be colored with at most k = min{∆2 +1, n} colors. Hence,
the number of queries in M = k + 1 is at most min{∆2 + 2, n+ 1}.

We now argue that the query sequence M = 〈q0, q1, . . . , qk〉 is monotone. Query q0 is the bit vector with all 0’s. For any
j ≥ 1, query qj sets all the nodes in color classes C1 through Cj to 1 and the remaining nodes to 0. Thus, each node that is set
to 1 in query qj remains 1 in all the subsequent queries qj+1, . . ., qk. In other words, the sequence is monotone.

Thus, we are left with the proof that M is complete; that is, for each node v with degree α in G and each value `, 0 ≤ ` ≤
α+ 1, there is a query q in M such that score(q,vi) = `. Query q0 ensures that score(q,vi) = 0. For the other values of `, consider
the closed neighborhood N [v] of v in G. Note that |N [v]| = α + 1. For each pair of nodes vx and vy in N [v], there is a path
consisting of at most two edges in G. Thus, the nodes in N [v] form a clique in G2. In other words, each node in N [v] must be
in a different color class of G2. Let Cj1 , Cj2 , . . ., Cjα+1

denote the color classes of G2 in which the nodes in N [v] appear, and
assume without loss of generality that j1 < j2 < . . . < jα+1. It is easy to see that for 1 ≤ ` ≤ α + 1, query qj` ensures that
score(qj` ,vi) = `. This completes the proof of Theorem 2.

Generating Coloring from a Monotone Complete Query Sequence
Theorem 2 shows that a monotone complete query sequence can be constructed from the coloring of the graph G2. We now
point out that this relationship is not accidental; indeed, from every monotone complete query sequence a valid coloring of G2

can be generated.

Theorem 10 Let S be a SyDS where each local function is symmetric. Let G(V,E) be the underlying graph of S. Suppose
there is a monotone complete query sequence M with ` queries for S. Then, G2 can be colored using `− 1 colors.

Proof: Let M = 〈q1, q2, . . . , q`〉 denote the given monotone complete query sequence for S. Let Ci denote the set of nodes of
G which have the value 0 in qi and the value 1 in qi+1, 1 ≤ i ≤ `− 1. Assign color i to all the nodes in Ci, 1 ≤ i ≤ `− 1. We
now prove that this scheme assigns a color to each node and that this is a valid coloring of G2.

First, we prove that each node is assigned a color. To see this, note that since M is a monotone complete query sequence,
query q1 has all its bits set to 0 and q` has all its bits set to 1. Therefore, for each node v, there is an index r such that the value
assigned to v in qr is 0 and that in qr+1 is 1. Thus, v appears in set Cr and receives color r. The monotonicity of M ensures
that v remains 1 in queries qr+1 through q`. In other words, the color assigned to v does not change subsequently.

We now prove by contradiction that the above method produces a valid coloring of G2. So, suppose that vi and vj are two
nodes which receive the same color, say k, but G2 has the edge {vi, vj}. By our coloring scheme, both vi and vj had the value
0 in qk and the value 1 in qk+1. There are two cases to consider.
Case 1: The edge {vi, vj} is in G.

Note that both vi and vj have color k. Let score(vi,qk) = α. Since both vi and vj changed from 0 in qk to 1 in qk+1 and
{vi, vj} is an edge in G, score(vi,qk+1) ≥ α + 2. Because M is monotone, none of the other queries in M provides a score of
α+ 1 to vi. This contradicts the assumption that M is complete.
Case 2: The edge {vi, vj} is not in G but in G2.

In this case, there is a node vx such that the edges {vi, vx} and {vj , vx} are in G. Let score(vx,qk) = β. Since both vi and vj
changed from 0 to 1 in qk+1 and both {vi, vx} and {vj , vx} are edge sin G, score(vx,qk+1) ≥ β + 2. Because M is monotone,
none of the other queries in M provides a score of β + 1 to vx. Again, this contradicts the assumption that M is complete, and
this completes the proof of Theorem 10.



Generating a Complete Query Set with High Probability
Here, we present a proof of Theorem 3. A statement of the theorem is given below.

Statement of Theorem 3: Let S be a symmetric SyDS with graph G(V,E) where |V | = n and maximum node degree = ∆.
A query set Q of size O(∆1.5 log (n)) which is complete with probability at least

(
1− 1

n

)
can be constructed for S.

In proving the above theorem, we will use the following notation. For any node v, let fv denote the symmetric function at v
and let d(v) denote the degree of v. Note that each input to fv is an integer that gives the number of 1’s assigned to the closed
neighborhood of v.

Proof of Theorem 3: Our method, discussed below, produces a query set with size at most 22∆
√

∆ + 2 log(n∆).

We first note that the all zeros and the all ones configurations can be used to query fv(0) and f(d(v) + 1), respectively
for all v ∈ V . This contributes the additive term 2. For a real number x, let 〈x〉 denote bx+ .5c, the integer closest to x.
Let Q =

{
qij ∼ D

(
i

∆+1

)
| 1 ≤ i ≤ ∆, 1 ≤ j ≤ 22

√
∆ + 2 log(n∆)

}
be the query set. For any v ∈ V , b ∈ {1, . . . , d(v)}

and q ∼ D(z), where z =
〈
b(∆+1)
d(v)+1

〉
, we have Pr

(
fv(b) is queried in q

)
= Pr

(
d1[v, q] = b

)
. Now, letting p′ = Pr

(
d1[v, q] =

b
)
, we have

p′ ≥
(
d(v) + 1

b

)(
z

∆ + 1

)b(
1− z

∆ + 1

)d(v)+1−b

≥ 1

11
√
d(v) + 2

≥ 1

11
√

∆ + 2
,

where the second inequality follows from Lemma 1 (below). Now, Pr
(
fv(b) is not queried by Q

)
≤

Pr
(
fv(b) is not queried by qzj , 1 ≤ j ≤ 22

√
∆ + 2 log(n∆)

)
.

The latter quantity is ≤
(

1 − 1
11
√

∆+2

)22
√

∆+2 log(n∆)

< 1
(n∆)2 . By union bound, Pr

(
Q is not a complete set

)
=

Pr
(
∃v, b such that fv(b) is not queried by Q

)
. Now, the latter quantity is ≤ ∑

v∈V
∑∆
b=1 Pr

(
fv(b) is not queried by Q

)
<

1
n∆ .
This completes the proof.

Lemma 1 For any three positive integers b ≤ d ≤ D and z =
〈
bD
d

〉
,
(
d
b

)(
z
D

)b(
1− z

D

)d−b ≥ 1
11
√
d+1

.

We will first prove the following claims.

Claim 1
(
1 + 1

b

)b
is monotone increasing in b for positive integers.

Proof: Consider the collection of (b + 1) numbers
(
1, b+1

b , . . . , b+1
b

)
. Using the fact that their arithmetic mean is ≥ their

geometric mean,

1 + b
(
b+1
b

)

b+ 1
≥
(

11
(b+ 1

b

)b) 1
b+1

(b+ 1) + 1

b+ 1
≥
(b+ 1

b

) b
b+1

.

Claim 2
(
d
b

)(
b
d

)b(
1− b

d

)d−b ≥ 1√
2(d+1)

.

Proof: Let h(b, d) =
(
d
b

)(
b
d

)b(
1− b

d

)d−b
. We will first show that for b < d

2 , h(b+ 1, d) ≤ h(b, d) and for b ≥ d
2 , h(b+ 1, d) >

h(b, d), and hence, h(·) attains a minimum value at b =
⌊
d
2

⌋
.

h(b+ 1, d)

h(b, d)
=

(
d
b+1

)
(
d
b

)
(
b+1
d

)b+1

(
b
d

)b
(
1− b+1

d

)d−b−1

(
1− b

d

)d−b

=
d− b
b+ 1

(b+ 1

b

)b b+ 1

d

(d− b− 1

d− b
)d−b d

d− b− 1

=
(b+ 1

b

)b(d− b− 1

d− b
)d−b−1

=
(b+ 1

b

)b( b′

b′ + 1

)b′
,



where, b′ = d−b−1. When b < d
2 , b′ ≥ b and when b ≥ d

2 , b′ < b. Applying Claim 1, we have for b < d
2 , h(b+1, d) ≤ h(b, d)

and for b ≥ d
2 , h(b+ 1, d) > h(b, d).

When b is even, h
(
d
2 , d
)
≥ 1√

2d
. Now we will show that when b is odd, h

(
d−1

2 , d
)
≥ 1√

2(d+1)
. Let b = 2k + 1.

h
(
k, 2k + 1

)

h
(
k, 2k + 2

) =

(
2k+1
k

)
(

2k+2
k

)
(

k
2k+1

)k
(

k
2k+2

)k

(
1− k

2k+1

)k+1

(
1− k

2k+2

)k+2

=
k + 2

2k + 2

(2k + 2

2k + 1

)k(k + 1

k + 2

)k+1(2k + 2

2k + 1

)k+1 2k + 2

k + 2

=
(

1 +
1

2k + 1

)2k+1(
1 +

1

k + 1

)−(k+1)

> 1 .

The inequality follows from Claim 1. Therefore, when d is odd, h
(
d−1

2 , d
)
> h

(
d−1

2 , d+ 1
)
≥ h

(
d+1

2 , d+ 1
)
≥ 1√

2(d+1)
.

Claim 3 For any positive x ≤ 1
2 , 1− x ≥ e−2x.

Proof: e2x(1− x) > (1 + 2x)(1− x) = 1 + x(1− 2x) ≥ 1.

Proof of Lemma 1: We have two cases to consider: (a) z ≤ bD
d and (b) z > bD

d . But first we note that by definition,∣∣z − bD
d

∣∣ ≤ 1
2 .

Case (a). bD
d − 1

2 ≤ z ≤ bD
d .

(
d

b

)( z
D

)b(
1− z

D

)d−b
≥
(
d

b

)( z
D

)b(
1− b

d

)d−b

≥
(
d

b

)( b
d
− 1

2D

)b(
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d
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b

)( b
d

)b(
1− b

d
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1− d

2bD

)b
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2
√
d

(
1− d

2bD

)b
≥ 1

e2
√

2(d+ 1)
≥ 1

11
√
d+ 1

.

The last but one inequality follows from Claim 3.

Case (b). bD
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This completes the proof.

Lower Bounds on Query Set Sizes

Statement of Proposition 1: Let S be a symmetric SyDS where the underlying graph G(V,E) has a maximum node degree
∆. Under the batch query model, every complete query set must contain least ∆ + 2 queries.

Proof: Under the batch mode, suppose a complete query set Q has less than ∆ + 2 queries. Since G has a node v of degree ∆,
the number of 1’s in the input to the symmetric function fv at v varies from 0 to ∆ + 1, a total of ∆ + 2 values. Thus, there is



at least one value k such that none of the queries in Q has a score of k with respect to v. Hence, the query set cannot correctly
determine the value of the function fv when the number of 1’s in the input to fv is exactly ks. This contradicts the assumption
that Q is a complete query set. The proposition follows.

Statement of Theorem 6: For every n ≥ 1, there is a threshold SyDS whose underlying graph is a clique on n nodes such that
at least n+ 1 queries are necessary under the adaptive query mode to correctly identify all the threshold values.

Proof: Consider a threshold SyDS S whose underlying graph G(V,E) is a clique on n nodes. Let V = {v1, v2, . . . , vn}.
We will tentatively choose the threshold of node vi to be i to answer queries under the adaptive model, 1 ≤ i ≤ n. We will
show that if the total number of queries is less than n + 1, the answers to the queries cannot distinguish between this tentative
assignment and a slightly different assignment of threshold values.

Suppose Q be a sequence of queries under the adaptive model, with |Q| ≤ n. We generate the responses to the queries
using the chosen tentative assignment of threshold values to nodes. The threshold of any node of S is in the range 0 through
n+ 1 (where the threshold value n+ 1 indicates the function which is zero for every input). Since G is a clique, the the closed
neighborhood of each node is the node set V . Thus, each query q ∈ Q provides the same score to each node of G. There are
n+ 1 scores in the range 0 through n. Since Q has at most n queries, there is at least one value k, 0 ≤ k ≤ n such that none of
the queries in Q provides the score k. We have three cases depending on the value of k.
Case 1: k = 0. In this case, from the responses to the queries inQ, one cannot distinguish between the case where the threshold
of node v1 is 0 and the case where the threshold of v1 is 1. (In both cases, the new state of v1 is 1 in the response to each query
in Q.)
Case 2: k = n. In this case, from the responses to the queries inQ, one cannot distinguish between the case where the threshold
of node vn is n and the case where the threshold of vn is n+ 1. (In both cases, the new state of vn is 0 in the response to each
query in Q.)
Case 3: 1 ≤ k ≤ n − 1. In this case, from the responses to the queries in Q, one cannot distinguish between the case where
the threshold of node vk is k and the case where the threshold of vk is k + 1. (In both cases, the responses have the following
property. For any query q ∈ Q where score(q,vk) ≤ k − 1, the new state of vk is 0 in the response. For any query q ∈ Q where
score(q,vk) ≤ k + 1, the new state of vk is 1 in the response.)

Thus, under the adaptive model, a query set with n or fewer queries cannot correctly identify all the thresholds for the chosen
SyDS. This completes the proof of Theorem 6.

Complexity of Generating Small Monotone Complete Query Sequences

Statement of Theorem 7: Problem SMCQS is NP-complete.

Proof: It is easy to see that SMCQS is in NP. To prove NP-hardness, we use a reduction from the Distance-2 Coloring (D2C)
problem defined as follows: given an undirected graph G(V,E) and an integer r, is G2 r-colorable? It is known that D2C is
NP-complete (McCormick 1983).

The reduction is straightforward. Given an instance of the D2C problem consisting of graph G and integer r, we obtain an
instance of the SMCQS problem where the graph isG itself and the length k of the query sequence is r+1. It was shown in the
proof of Theorem 2 that when G2 is r-colorable, there is a monotone complete query sequence with k = r + 1 queries. Also,
it was shown in the proof of Theorem 10 that from any monotone complete query sequence of length r + 1, one can obtain a
valid coloring of G2 with r colors. Thus, there is a solution to the SMCQS problem iff there is a solution to the D2C problem
and this completes the proof.

Complexity of Query Set Compaction

Statement of Theorem 8: (a) The problem QSC is NP-complete even when the underlying graph has no edges. (b) Unless P
= NP, QSC cannot be approximated to within the factor o(log n), where n is the number of nodes in the underlying graph of
the SyDS.

Our proof of this result relies on known results for the Minimum Set Cover (MSC) problem which is defined as follows:
given a base set X = {x1, x2, . . . , xn}, a collection Y = {Y1, Y2, . . . , Ym}, where each Yj is a subset of X , 1 ≤ j ≤ m, and
an integer α ≤ m, is there a subcollection Y ′ ⊆ Y such that (i) |Y ′| ≤ α and (ii) the union of all the sets in Y ′ is equal to X?
It is well known that MSC is NP-complete (Garey and Johnson 1979) and that unless P = NP, it cannot be approximated to
within the factor o(log (n), where n is the size of the base set (Vazirani 2001).
Proof:

Part (a): It is easy to see that QSC is in NP. We prove NP-hardness through a reduction from MSC. Let the given instance
of MSC consist of base set X = {x1, x2, . . . , xn}, collection Y = {Y1, Y2, . . . , Ym} of nonempty subsets of X and integer
α ≤ m. Without loss of generality, we may assume that each element of X appears in some subset in Y ; otherwise, there is no



solution to the MSC instance. We will construct the underlying graph G(V,E) of a SyDS S and a complete query set Q for S
as follows.

1. The node set V of G is given by V = V1 ∪ V2, where V1 = {v1, v2, . . . , vn} is in one-to-one correspondence with the base
set X = {x1, x2, . . . , xn} of the MSC instance and V2 = {vn+1} consists of just one node. (Thus, V has a total of n + 1
nodes.)

2. The edge set E of G is empty; that is, the degree of each node is 0. Thus, for each node v ∈ V , the number of 1’s in the input
to the local function fv at v can only be either 0 or 1.

3. The query set Q consists of m + 1 queries (where m = |Y |) constructed as discussed below. Note that each query is an
(n+ 1)-bit vector, where the ith bit specifies the value of node vi, 1 ≤ i ≤ n+ 1.

(a) For each Yj ∈ Y , 1 ≤ j ≤ m, Q contains a query qj constructed as follows. Let Yj = {xj1 , xj2 , . . . , xjr}. Then, in
query qj , the bits corresponding to the nodes vj1 , vj2 , . . . , vjr are all 1 and the other bits are 0.

(b) We add one more query qm+1 to Q; in query qm+1, bits 1 through n are set to 0 and bit n+ 1 is set to 1.

4. The upper bound on the size of the required subset Q′ of queries is set to α+ 1.

This completes the construction of the QSC instance. It can be seen that the construction can be carried out in polynomial time.
We now show that Q is a complete query set for S.

Claim 1: The query set Q constructed above is a complete query set for S.

Proof of Claim 1: We must show that for each node vi ∈ V , Q contains two queries, say qi0 and qi1 , such that score(qi0 ,vi)
= 0 and that score(qi1 ,vi) = 1. First, consider any node vi, where 1 ≤ i ≤ n. Query qm+1 sets the value of vi to 0; thus
score(qm+1,vi) = 0. Suppose the element xi (corresponding to node vi) appears in subset Yj . By our construction, query qj sets
the value of vi to 1; thus, score(qj ,vi) = 1. For node vn+1, each query qj created from Yj sets the value of vn+1 to 0; that is,
score(qj ,vn+1) = 0; Also, query qm+1 sets the value of vn+1 to 1; thus, score(qj ,vn+1) = 1. The claim follows. �

We now prove that there is a solution to the QSC instance if and only if there is a solution to the MSC instance.

Part 1: Suppose there is a solution Y ′ to the MSC instance consisting of sets Yj1 , Yj2 , . . ., Yj` , for some ` ≤ α. Consider the
query set Q′ = {qj1 , qj2 , . . . , qj` , qm+1}, which includes the queries corresponding to the sets in Y ′ along with query qm+1.
Note that Q′ ⊆ Q. Also, since ` ≤ α, |Q′| ≤ α + 1. Thus, we only need to show that Q′ is a complete query set. Consider
any node vi, where 1 ≤ i ≤ n. Query qm+1 sets the value of vi to 0; thus, score(qm+1,vi) = 0. Further, Since Y ′ is a set cover,
the element xi (corresponding to node vi) appears in some subset Yjz ∈ Y ′. By our construction, in query qjz , the value of vi
is 1; thus, score(qjz ,vi) = 1. For node vn+1, each query q ∈ Q′ − {qm+1} sets the value of vn+1 to 0; thus, score(q,vn+1) = 0.
Further, query qm+1 sets the value of vn+1 to 1; in other words, score(qm+1,vn+1) = 1. Hence, Q′ is a complete query set.

Part 2: Let Q′ be a solution to the QSC instance with |Q′| ≤ α + 1. We claim that qm+1 ∈ Q′. This is because qm+1

is the only query for which score(vn+1 to 1. Define Q′′ = Q′ − {qm+1}. Let |Q′′| = ` and note that ` ≤ α. Further, let
Q′′ = {qj1 , qj2 , . . . , qj`}. Consider the following subcollection Y ′ of Y given by Y ′ = {Yj1 , Yj2 , . . . , Yj`}. We now show that
Y ′ is a solution to the MSC instance. To see this consider any element xi ∈ X , where 1 ≤ i ≤ n. Query qm+1 ∈ Q′ sets node
vi to 0. Since Q′ is a complete query set, some query qjz ∈ Q′′ must set vi to 1. By our construction, the subset Yjz contains
xi. Thus, Y ′ is a set cover. Since |Y ′| ≤ α, Y ′ is a solution to the MSC instance, and this completes the NP-hardness proof.

We use the same reduction to prove the non-approximability result. Suppose A is an approximation algorithm that provides
a performance guarantee of ρ = o(log n) for the QSC problem, where n is the number of nodes in the underlying graph of the
SyDS. We will show that A can be used to construct an 2ρ = o(log n) approximation algorithm for the MSC problem, con-
tradicting the known non-approximability result for MSC. Towards this proof, consider any instance of the MSC optimization
problem. Let OPT(MSC) denote the value of an optimal solution (i.e., the minimum size of a set cover) for the MSC instance
and let OPT(QSC) denote the value of an optimal solution (i.e., the minimum size of a complete query subset) for the QSC
instance constructed from the MSC instance. In the NP-hardness proof, we showed that

OPT(QSC) ≤ OPT(MSC) + 1. (1)

Suppose we run Algorithm A on the resulting QSC instance. Since A provides a ρ approximation, the solution produced by
A has at most ρOPT(QSC) queries. From this query set, it was shown in the NP-hardness proof that a solution to the MSC
instance with ρOPT(QSC)− 1 subsets can be constructed. Letting APPROX(MSC) denote the resulting number of subsets, we
have

APPROX(MSC) ≤ ρOPT(QSC)− 1
≤ ρ [OPT(MSC) + 1]− 1 (using Equation (1))
≤ 2ρOPT(MSC) (since OPT(MSC) ≥ 1).



Thus, ifA provides a performance guarantee of ρ = o(log n) for the QSC problem, then there is a 2ρ = o(log n) approximation
algorithm for the MSC problem as well. This completes the proof of Theorem 8.

Statement of Theorem 9: Algorithm Approx-QSC provides a performance guarantee ofO(log n) for the QSC problem, where
n is the number of nodes in the underlying graph of the SyDS.

To establish the above theorem, we need the following lemma.

Lemma 2 The reduction from QSC to MSC used in Steps 1 and 2 of Approx-QSC (Figure 3) produces an instance of MSC such
that any solution with r subsets to the MSC instance is a solution with r queries to the QSC instance and vice versa.

Proof: First, consider any solution Y ′ = {Yj1 , Yj2 , . . . Yjr} with r subsets to the MSC instance. Let Q′ = {qj1 , qj2 , . . . , qjr} be
the corresponding query set with r queries. We need to show thatQ′ is a complete query set; that is, for any node vi (1 ≤ i ≤ n)
and any integer k, 0 ≤ k ≤ di, there is a query q ∈ Q′ such that the number of 1’s in the input to the local function fi at vi due
to q is exactly k. To see this, note that Y ′ is a set cover. Thus, there is a set Yjz ∈ Y ′ such that the element aik ∈ X appears in
Yjz . By our construction, aik was added to Yjz because query qjz provides exactly k 1’s to the local function fi at vi.

To prove the converse, let Q′ = {qj1 , qj2 , . . . , qjr} be a solution with r queries to the QSC instance. Consider the collection
Y ′ of sets given by Y ′ = {Yj1 , Yj2 , . . . Yjr}. We claim that Y ′ is a solution to the MSC instance. To see this, consider any
element aik ∈ X . Since Q′ is a complete query set, there is some query qjz ∈ Q′ such that the number of 1’s in the input to
the function fi at node vi due to qjz is exactly k. By our construction, set Yjz contains the element aik. In other words, Y ′ is a
solution to the MSC instance with r sets.

The following is an immediate consequence of the above lemma.

Observation 2 Let OPT(QSC) denote the size of an optimal query set for a given QSC instance and let OPT(MSC) denote the
size of an optimal solution to the MSC instance obtained at the end of Step 2 of Approx-QSC. Then, OPT(QSC) = OPT(MSC).

We can now prove Theorem 9.

Proof of Theorem 9: Let OPT(QSC) denote the size of an optimal query set for the QSC instance and let OPT(MSC) denote
the size of an optimal solution to the MSC instance. As mentioned earlier, the size of the base set X is 2|E| + n. Since
|E| < n2, we note that |X| < 3n2. The greedy algorithm for MSC provides a performance guarantee of O(log |X|. Since
|X| < 3n2, this performance guarantee is O(log n). Thus, the approximation algorithm for MSC produces a solution with at
most O(log n) OPT(MSC) sets. By Lemma 2, any solution to MSC with r subsets leads to a solution with r queries for QSC.
Thus, the size of the resulting query set is at mostO(log n) OPT(MSC) which is equal toO(log n) OPT(QSC) by Observation 2.
Thus, Approx-QSC has a performance guarantee of O(log n).

Statement of Theorem 4: For any threshold SyDS whose underlying graph G belongs to the class of (α, β)-simple graphs,
O(log n) queries are sufficient in the adaptive mode to identify all the threshold values.

Proof: We give an approach that uses α dlog ne + β2 dlog βe queries under the adaptive model. Since α and β are constants
independent of n, the number of queries is O(log n).

The idea is to first use a separate binary search for each of the α nodes of degree q; this uses at most α dlog ne queries. Let
V ′ denote the subset of nodes of G such that each node in V ′ has a degree of at most β. Now, if we construct G2, it can be
seen that the subgraph G′ of G2 on V ′, it can be seen that the maximum node degree in G′ is at most β2. Therefore, G′ can be
colored using at most β2 colors and a binary search can be done simultaneously for all the nodes in each color class. This will
use at most β2 dlog βe queries, giving a total of α dlog ne+ β2 dlog βe queries.

Statement of Theorem 5: For a threshold SyDS whose underlying graph G(V,E) is scale-free with exponent γ ≥ 1, the
thresholds can be found using O

(
n

2
γ+1
)

queries under the adaptive query mode.

Proof: Let V1 ⊆ V correspond to the set of nodes with degree at most β and V2 be the remaining set. By Theorem 4, the
number of queries required is at most g(β) := |V2| log n+ β2 log β. Since |V2| is the number of nodes with degree ≥ β, it is at
most
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for some constants c, c′ and c′′. Therefore, g(β) = c n
βγ−1 log n + β2 log β. For β > 0, g(β) is a convex function. Equating

its first derivative to 0 and rearranging, we note that g(β) attains a minimum value for β satisfying βγ+1 log β = Θ(n log n)

or β = Θ
(
n
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γ+1
)
. For this value, g(β) = O
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.



Why Query Sets Generated by Method I are Difficult to Compress: As mentioned in the paper, our experimental results
show that query sets generated by coloring G2 are already compact; that is, i.e., no subset of these query sets can be complete.
This can be explained intuitively as follows. If this set is not compact, there exists at least one query which is not required. We
recall that by construction, the query set can be arranged as a monotone increasing sequence q0, q1, . . . , such that in query qi
all nodes of color i are set to switched to state 1. Suppose query qk is not required for the set to be complete. Then, using the
arguments in the proof of Theorem 2, we can show that if all vertices of color k were assigned color k+ 1, the coloring would
still be valid. This means that in the greedy strategy, all nodes colored k + 1 could actually have been assigned color k. Since
the greedy strategy always gives the minimum color available to nodes, this situation cannot occur.

Method 3: Description of Our Adaptive Algorithm

Algorithm 1: Greedy heuristic to infer the thresholds.
Data: Network G(V,E) and thresholds tv for every node v.
Result: Complete query set Q

1 for v in V do
2 Let tL(v) = 0 and tH(v) = d(v) + 2;
3 end
4 Let Vt = V denote the set of nodes for which threshold needs to be inferred;
5 Let Q = ∅ be the query set;
6 while Vt 6= ∅ do
7 Let i = 1;
8 Let qi be the current query. Let qi[v] = 0, ∀v ∈ V ;
9 Let Vrem = Vt;

10 while Vrem 6= ∅ do
11 Let vmax = arg maxv∈Vrem

tH(v)− tL(v);
12 Set exactly b(tH(vmax)− tL(vmax))/2c neighbors of vmax to state 1 in qi;
13 Vrem ← Vrem \ {N [vmax, G

2]};
14 end
15 Compute the successor s of qi;
16 //Update tL(v) and tH(v) for all v ∈ Vt//
17 for v ∈ Vt do
18 if s[v]=0 and tL(v) ≤ score(qi, v) then
19 tL(v)← score(qi, v) + 1;
20 end
21 else if s[v]=1 and tH(v) > score(qi, v) then
22 tH(v)← score(qi, v);
23 end
24 end
25 Remove all nodes v from Vt such that tL(v) = tH(v);
26 Q← Q ∪ {qi};
27 end


