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Abstract—Interventions such as vaccinations or in-
stalling anti-virus software are common strategies for
controlling the spread of epidemics and malware on
complex networks. Typically, nodes decide whether to
implement such an intervention independently, depend-
ing on the costs they incur. A node can be protected
by herd immunity, if enough other nodes implement
such an intervention, making the problem of determin-
ing strategic decisions for vaccination a natural game-
theoretical problem. There has been a lot of work on
vaccination and network security game models, but
all these models assume the vaccination decisions are
made at the start of the game. However, in practice, a
lot of individuals defer their vaccination decision, and
the reasons for this behavior are not well understood,
especially in network models.

In this paper, we study a novel repeated game
formulation, which considers vaccination decisions over
time. We characterize Nash equilibria and the social
optimum in such games, and find that a significant
fraction of vaccinations might be deferred, in general.
This depends crucially on the network structure, and
the information and the vaccination delay. We show
that finding Nash equilibria and the social optimum are
NP-hard in general, and we develop an approximation
algorithm for the social optimum whose approximation
guarantee depends on the delay.

I. Introduction

The spread of epidemics on social contact networks and
malware in computer networks is commonly modeled by
diffusion processes on networks, in which the infection
spreads from a node to its neighbors. The threat of
malware is becoming increasingly critical, as the number
of connected devices grows rapidly. Similarly, infectious
diseases continue to pose a significant public health problem,
despite significant advances in medicines. There exist
effective interventions to control the spread of epidemics and
malware, e.g., by taking vaccinations in the case of diseases,
and installing antivirus software patches in the case of
malware. However, these interventions incur a certain cost
for the individual (e.g., the economic cost of the vaccine
or the patch). Further, an individual can get protected
without any intervention if enough nodes in the network
are protected— this is referred to as herd immunity in
mathematical epidemiology, and is a natural setting for a
game-theoretical analysis. This has been a very active area
of research both in epidemiology and network security, e.g.
[3], [2], [13], [4], [17], [14], [7], [10], [9], [19], [20].

An important limitation of all these approaches is that
they typically consider vaccination decisions only at the
start of the epidemic, in a simultaneous game setting, as
discussed later in Section VI. In practice, very few people
get vaccinated early in the season, despite active campaigns
by public health agencies, such as the CDC. Vaccination
rates increase as the epidemic spreads, and understanding
this remains a big challenge. There has been some work
on temporal vaccination strategies in the mathematical
epidemiology literature, e.g., [19], but this is based on
differential equation models, and does not consider realistic
network structure. A recent work [11] studied the case
of developing a vaccine distribution plan to suppress a
pandemic on a network, thus considering a temporal graph.
However, the paper focuses on centralized policymaking,
while our paper is the first study of temporal vaccination
decision making by individuals in the complex network.

Our main contributions are summarized below.

1)We develop a repeated game formulation, Temporal-
Vaccination, which considers vaccination decisions at
multiple time steps. We characterize the structure of
Nash equilibria (NE) in such games, and find that they
depend very crucially on the network structure and the
delay parameters. Further, we show that NE need not
always exist, and deciding if there exists a NE is NP-hard,
in general.

2) Both the NE and optimal strategies exhibit interesting
temporal structure. Even if vaccination decisions are
allowed to be made at multiple time steps, we show that
all decisions are made either at time 0 (before the start
of the epidemic), or the first time T > 0 when the next
round is played, if the source of the infection is known
before T . Further, there can be significant variation in
the number of nodes that choose to vaccinate at time T ,
instead of at time 0. Additionally, we find that even if
no nodes are vaccinated at time 0 in the NE, the social
optimum might choose to have a significant fraction at
the start.

3) Computing the social optimum turns out to be a
challenging stochastic optimization problem. We show
that it is NP-complete, and develop an approximation
algorithm which gives a strategy with cost at most 2T
times the optimum, where T is as defined above.

4) We study the characteristics of NE in different real and
synthetic networks empirically. We use best response
strategies, which converge to NE very fast, in general.
We find the number of nodes which get vaccinated at the



start is very sensitive to the ratio of the vaccination and
infection costs. Further, a significant fraction of nodes
defer their vaccination decision. We also find that high
degree nodes appear to be more likely to get vaccinated
initially.

II. Preliminaries

Setting. We consider the spread of a highly infectious
disease on a graph G = (V,E), modeled as a simple
discrete time SI model of an epidemic, where S and I
denote Susceptible and Infectious states (see, e.g., [1]). If a
node v is infected at time t, all of its uninfected neighbors
v′ will be infected at time t + 1, unless it is vaccinated
at or before t + 1. Let Ct

v denote the cost for node v to
get vaccinated at time t. A node need not decide to get
vaccinated at time t = 0, but might defer the decision to a
future time. If node v gets infected, we assume it incurs a
cost Lv, such that that Lv > Ct

v for all t, i.e., infection is
costlier than vaccination. We assume that the vaccine has
100% efficacy and starts protecting the node immediately.
We discuss these assumptions later in Section VII. We refer
to Table I for some additional notation and definitions
needed for the rest of the paper.

A. Multi-stage game formulation

We formally define TemporalVaccination as a multi-
stage game. We denote a game instance by (G, T ,C,L),
where G = (V,E) is a graph on n vertices, T = {t0 =
0, · · · , tk} is a set of times at which vaccination decision can
be made, C = {Ct

v | v ∈ V, t ∈ T } is the set of vaccination
costs, and L = {Lv | v ∈ V } is the set of infection costs.
Each node v ∈ V is a player. The strategy function is
denoted by Y . The strategy for node v at time t, given
that the source of infection is s, is Y (v, s, t) ∈ {0, 1}. Since
the source is not revealed at t = 0, we denote the strategy
at time 0 by Y (v, ·, 0). Let Y be the set of all strategy
functions. Yt corresponds to the strategies at time t, i.e.,
{Y (v, s, t) : v, s ∈ V }. Let Y<t correspond to the strategies
until time t, i.e., {Y (v, s, t′) : v, s ∈ V, t′ < t}.

The TemporalVaccination(G, T ,C,L) game is
played in the following manner:

1) At time t = 0, all the nodes play a simultaneous
vaccination game to decide whether to get vaccinated or
not. If node v gets vaccinated at this time, we denote
this by Y (v, ·, 0) = 1. Note that the vaccine takes effect
immediately.

2) A randomly chosen node s ∈ V is selected to be the
source of the epidemic. We assume that if Y (s, ·, 0) = 1,
it remains immune, and the epidemic does not start.
If Y (s, ·, 0) = 0, then s gets infected and the infection
spreads to each uninfected neighbor in subsequent times.
We also assume perfect information, so all nodes know
the identity of source s, and the entire network.

3) For each t = 1, 2, . . ., we have the following two steps:
(a) If t ∈ T , a simultaneous vaccination game is played

at time t, and each node v decides whether to get
vaccinated at this time or not— this is denoted by
Y (v, s, t) ∈ {0, 1}, with 1 denoting vaccination.
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Fig. 1: Example illustrating the different rounds of the
TemporalVaccination game on a graph with 5 nodes,
with T = {0, 2}. At t = 0, some nodes are vaccinated
(blue). After this, the infection source is revealed (red).
Since 1 6∈ T , there is no vaccination decision (Step 3(a)
of the game specification) at time 1, and instead only the
epidemic spreading step (Step 3(b)) occurs. Next, since
2 ∈ T , vaccination decisions are taken, and thus both
3(a) and 3(b) occur. In configuration D node 5 chooses to
vaccinate, while in D′ it chooses not to vaccinate.

(b) Let It−1 denote the set of nodes which are infected
at time t − 1. For each node u ∈ It−1, each un-
infected neighbor v ∈ N(u), v 6∈ It−1 will get
infected at time t, unless v is already vaccinated
or vaccinates at t. Recall that vaccination takes
precedence over infection in our model. Define set
It = It−1 ∪ {v : v gets infected at time t} to be the
new set of infected nodes.

4) The game stops at time t if there are no more uninfected
nodes that can be infected from their neighbors, and
there are no more vaccination games to be played, i.e.,
t′ 6∈ T for all t′ ≥ t. Each node v incurs cost Lv if it
ever got infected, i.e., v ∈ It. It incurs cost Ct′

v if it got
vaccinated at time t′ ≤ t. The overall cost for node v is
the expectation over all possible choices of the source.

The configurations representing the states of players
during the course of the TemporalVaccination game can
be viewed in the form of a tree— note that this is not the



same as the game tree in the extensive form representation,
and we describe it here only for clarifying the structure of
the game. The configuration at some time t of the game
can be specified by the tuple ({Y<t(v, s, t) : v ∈ V }, It),
where {Y<t(v, s, t) : v ∈ V } represents all the vaccination
decisions in the game rounds played so far and It is the
current set of infected nodes. The root node of this tree is
the tuple (φ, φ), since initially there are no infections, and
no vaccination game has been played. The root node has
2n child configurations (the “level 1” configurations) of the
form (Y0, φ), each corresponding to a set V ′ ⊂ V of nodes
that get vaccinated at time 0. Each level-1 configuration
has n children (the “level 2” configurations), (Y0, {s}), each
corresponding to a random source s. From this point on,
the tree expands based on Step 3 of the game specification
above. If t ∈ T , then step 3(a) happens and there are
2n child configurations, each corresponding to a subset
V ′ ⊂ V of nodes that get vaccinated at time t. After this,
step 3(b) occurs, where the set It is updated and each
configuration corresponds to (Y<t, It). The costs of all the
nodes are specified for the leaf configurations of this tree,
as discussed in Step 4 of the game specification.
Example. A fragment of the tree of configurations is shown
in Figure 1. Configuration A can be written down as (Y0, φ)
where Y0 is such that Y (2, ·, 0) = 1 and Y (v, ·, 0) = 0 for
all v 6= 2. There are 2n such configurations in level 1, which
are children of the root (φ, φ). The child configuration
marked B corresponds to the tuple (Y0, {1}); there are n
such configurations which are children of A. C represents
a level 3 configuration, where the disease spreads at time
t = 1. Configurations D and D′ depict the vaccination
decisions (and subsequent epidemic spread) that occur at
time 2, with E and E′ respectively showing the final states.
Simplified uniform cost game. In the rest of the paper,
we will frequently consider a simplified game instance
where T = {0, T} and every vertex has the same infection
cost L and vaccination costs C0 and CT . We will use the
term (G,T, {C0, CT }, L) to denote such instances. Further,
when C0 = CT = C, we will use (G,T,C, L).
Cost model. As discussed above, the cost of a node
depends on the final configuration— node v incurs cost
Lv if it ever got infected, and it incurs cost Ct

v if it got
vaccinated time t. The overall cost for a node is the expected
cost over all the random sources (which is the only source
of stochasticity in the model). Formally, we define the cost
incurred by v under the strategy profile Y (.) as:

cost(v, Y (.)) = C0
vY (v, ·, 0)

+
∑
s∈V

1
n

(∑
t

Ct
vY (v, s, t) + Lv1s→v|Y (.)

)
,

where 1s→v|Y (.) = 1 if v gets infected due to s under strat-
egy profile Y (.). We define cost(Y (.)) =

∑
v cost(v, Y (.)).

B. Nash equilibria and social optimum
For a strategy profile Y (·), let Y−v(·) be the strategy

profile for all the remaining players. We say that a strategy
Y (·) is a Nash equilibrium (NE) [16] if for each v ∈ V :
cost(v, Y ′(.)) ≥ cost(v, Y (.)) where Y ′(.) is any strategy
profile such that Y ′−v(·) = Y−v(·), i.e., Y ′(·) has the same

TABLE I: Notation summary

Network

G = (V, E) simple undirected graph with vertex set V and edge
set E

n number of vertices in G
G[V ′] subgraph induced by V ′ ⊆ V
N(v, G) neighborhood of v in G
dG(s, i) shortest path distance between nodes s and i in the

graph G
B(G, v, l) {u : dG(u, v) ≤ l} i.e., l-ball
P (G, v, l) {u : dG(u, v) = l} i.e., l-perimeter

Strategy

T set of time instants at which the game is played
T min{t ∈ T : t > 0}, smallest positive time in T
Y set of all strategy profiles
Y (.) a strategy profile
Y (v, s, t) strategy for node v at time t, given source s; takes

values from {0, 1}; Y (v, ·, 0) for time 0
Yt strategies at time t, {Y (v, s, t) : v, s ∈ V }
Y<t strategies until time t, {Y (v, s, t′) : v, s ∈ V, t′ < t}
Y−v(·) strategies of all players except v
V0(Y ) {v ∈ V : Y (v, ·, 0) = 1}

Costs

Ct
v Cost for node v to vaccinate at time t

C {Ct
v | v ∈ V, t ∈ T }

Lv Cost of infection for node v
L {Lv | v ∈ V }
cost(v, t) cost incurred by v at time t

Game

(G, T , C, L) TemporalVaccination game instance
(G, T, {C0, CT }, L) two-stage uniform cost game
(G, T, C, L) further simplified game instance with C0 = CT

strategies as Y (·) for all other players v′ 6= v. In other words,
no player v can reduce its expected cost by unilaterally
changing its strategy, given that the other players’ strategies
are fixed.

We define the social optimum as a strategy Y (·) that has
the minimum cost, over the space of all possible strategies—
this is not necessarily (and is not usually) a pure NE.
Therefore, the cost of a pure NE relative to the social cost
is an important measure, and the maximum such ratio over
all possible pure NE is known as the price of anarchy [12].

III. Characterization of NE in the
TemporalVaccination game

We start with a characterization of pure NE, which
will be repeatedly used in our subsequent discussions.
Section III-A will cover the hardness of computing a NE.
This will be followed by bounds on the Price of Anarchy. In
Section III-C and III-D, we study the structure of the NE
and social optimum of complete graphs and Erdős-Rényi
graphs respectively.

Lemma 3.1: For a game instance (G, T ,C,L), let T =
min{t ∈ T : t > 0} be the smallest positive time in T .
Let V0(Y ) = {i | Y (i, ·, 0) = 1}, the set of nodes which
vaccinated at time 0. For any i ∈ V , let Gi = G[V −V0(Y )∪
{i}]. A strategy profile Y (·) is a pure NE iff

(1) ∀i ∈ V , Y (i, ·, 0) +
∑

t Y (i, s, t) ≤ 1, for each s ∈ V .
(2) Every node i ∈ V such that Y (i, ·, 0) = 1 satisfies
|B(Gi, i, T − 1)|Li

n + |P (Gi, i, T )|C
T
i

n > C0
i .



(3) Every node i ∈ V such that Y (i, ·, 0) = 0 satisfies
|B(Gi, i, T − 1)|Li

n + |P (Gi, i, T )|C
T
i

n ≤ C
0
i .

(4) Every node i ∈ V such that Y (i, s, T ) = 1 satisfies
|B(Gi, i, T − 1)|Li

n + |P (Gi, i, T − 1)|C
T
i

n ≤ C0
i and

d(Gi, s, i) = T .

Proof: Statement (1) follows from the fact that a
node becomes immune the first time it gets vaccinated.
Therefore, vaccinating again only increases its cost, and
will not happen in a NE. Consider any insecure node i at
time 0 (i.e., Y (i, ·, 0) = 0). If dGi(s, i) < T , node i will be
infected even before it gets a chance to vaccinate at T , and
so it has Y (i, s, T ) = 0. If dGi

(s, i) = T , then node i is
better off getting vaccinated, since CT

i < Li. Therefore, all
nodes at distance T from s in G[V −V0(Y )] get vaccinated
at time T .

From the above discussion, the expected cost of not
vaccinating at time 0 is Pr(i will get infected whether it
vaccinates at time T or not)×Li+Pr(i will vaccinate at
time T and become secure)×CT

i = |B(Gi, i, T − 1)|Li

n +
|P (Gi, i, T )|C

T
i

n . A node vaccinates at time 0 if the expected
cost of not vaccinating is greater than C0

i (which implies
statement (2)). If this expected cost is less than C0

i , then
the node does not get vaccinated at time 0, i.e., Y (i, ·, 0) = 0
(which implies statement (3)). In this case, it vaccinates at
time T (i.e., Y (i, s, T ) = 1) iff it is at distance T from s,
which implies statement (4).

Lemma 3.1 implies that once the source is revealed,
all nodes make their vaccination decisions at the earliest
possible time. Therefore, it suffices to study the Tempo-
ralVaccination game with T = {0, T}.

Corollary 3.1: Let Y (·) be a pure NE for a Temporal-
Vaccination instance (G, T ,C,L). Let T = min{t ∈ T :
t > 0} be the smallest positive time in T . Then, we have
Yi(t) = 0 for all t > T .

It is easy to verify that Lemma 3.1 and Corollary 3.1
hold for mixed NE as well.

A. Existence of pure NE

Consider an instance (G, T ,C,L) where T = {0, T}
and for each v ∈ V , CT

v = 0. This game belongs to the
family GNS(δ) studied in [13], where each node makes a
decision to vaccinate or not at time 0, and the infection
spreads from a random source node to a distance of upto δ.
Here, δ = T − 1. In [13], it was shown that for δ = 1, pure
NE always exists, while for 1 < δ <∞, there are instances
of GNS(δ) for which pure NE does not exist, and that
determining if an instance has a pure NE is NP-complete.
Therefore, we have the following result.

Lemma 3.2: The problem of determining if an instance
(G, T ,C,L) has a pure NE is NP-complete. For the case
T = 2, and CT

i = 0 for all nodes i ∈ V (G), a pure NE
always exists.

Since pure NE don’t always exist, we consider sufficient
conditions in which they exist. Given (G, T ,C,L), we define
an auxiliary graph Ĝ as follows: Let T = {0, T}. The

vertex set of Ĝ, V̂ comprises of all vertices v which satisfy
cost(v,G) = |B(G, v, T − 1)|Li

n + |P (G, v, T )|C
T
v

n > C0
v .

These are precisely the nodes which have the incentive to
vaccinate at time 0. We draw an edge between two vertices u
and v in Ĝ if and only if B(G, u, T )∩B(G, v, T ) 6= ∅, i.e., u
is adjacent to v if and only if removing one reduces the
incentive to vaccinate for the other. Now we show the
following:

Lemma 3.3: For an instance (G, T ,C,L) where, T =
{0, T}, a pure NE exists if Ĝ is bipartite.

Proof: First, we note that if v is not adjacent to w in Ĝ,
then, removing w does not change cost, i.e., cost(v,G −
{w}) = cost(v,G). Also, if the cost is above C0

v even after
removing all the neighbors of v in Ĝ, then, it implies
that v will vaccinate at time 0 in every pure NE. Such
nodes can be ignored in our analysis. Therefore, from
now on we will assume that G does not have such nodes
and for every v, cost(v,G − N(v, Ĝ)) ≤ C0

v . Suppose Ĝ
is a bipartite graph with bipartition (V̂1, V̂2). We now
show that the strategy Y satisfying Y (v, ·, 0) = 1 if
v ∈ V̂1, and Y (v, ·, 0) = 0 if v ∈ V \ V̂1 corresponds
to a pure NE. If a vertex v ∈ V̂1 changes its strategy
from secure to insecure, then, since N(v, Ĝ) ∩ V̂1 = ∅,
it implies that B(G(Y−v), v, T ) = B(G, v, T ). Therefore,
cost(v,G(Y ′)) = cost(v,G) > C0

v ≥ cost(v,G(Y )). For
a vertex v ∈ V̂2, since N(v, Ĝ) ⊆ V̂1, G(Y ) does
not contain N(v, Ĝ). Hence by the earlier assumption,
cost(v,G(Y )) = cost(v,G − N(v, Ĝ)) ≤ C0

v . Therefore, v
has no incentive to secure itself. The nodes in V (G) \V (Ĝ)
satisfy cost(v,G(Y )) ≤ cost(v,G) ≤ C0

v . Therefore, they
have no incentive to vaccinate either. Further, for every v ∈
V , we set Y (v, s, T ) = 1 if and only if v ∈ P (G[V \ V̂1], s, T )
and Y (v, ·, 0) = 0. From Lemma 3.1, it follows that Y is a
pure NE.

B. Bounds on the Price of Anarchy
Now, we will show that the price of anarchy for the

TemporalVaccination game can be as high as Θ(n).
Lemma 3.4: Let C and L be any real numbers satisfying

0 < C < L and let r = dL/Ce and let T > 1. There
exists a graph on n > 2r2T vertices such that the price of
anarchy of the simplified TemporalVaccination instance
(G,T,C, L) is at least (n−2r2T )2

n(2T +1)r . In particular, if C, L and T
are constants, then, the price of anarchy is Θ(n).

Proof: The graph G is constructed as follows. The
vertex set V is the disjoint union {`} ∪

⋃r
i=1 Ki ∪Pi where

each Ki = {ci1, . . . , ci(n−2r2T )/r} induces a cycle on the
vertices cij , and each Pi = {pi1, . . . , piT } induces the path
pi1pi2 · · · piT . In addition, each pi1 is adjacent to all vertices
in Ki, and each piT is adjacent to `. Note that there is a
deficit of r2T − rT − 1 nodes. One way to rectify this is
to add a path with these many nodes. This will not affect
the proof in any way. Therefore, we will ignore this set
of nodes for the rest of the proof. Let P =

⋂r
i=1 Pi and

K =
⋂r

i=1 Ki.
First, we will show that for every v ∈ V (G), cost(v,G) =

|B(G, v, T − 1)|Ln + |P (G, v, T )|Cn ≤ C. If v ∈ Ki, then,



B(G, v, T−1) ⊆ Ki∪Pi and P (G, v, T ) = {piT }. Therefore,
cost(v,G) =

(
n−2r2T

r + T
)

L
n + C

n ≤
(n−1)L

nr + C
n ≤ C.

Suppose v ∈ Pi. If v = piT then, B(G, v, T − 1) ⊆ P ∪ {`}
and P (G, v, T ) = Ki ∪ {pj(T−1) | j 6= i}. If v = pik, k 6= T ,
then, B(G, v, T − 1) ⊆ Ki ∪ P ∪ {`} and P (G, v, T ) =
{pj(T−k) | j 6= i}. In either case, cost(v,G) ≤

(
n−2r2T

r +
rT + r+ 1

)
L
n ≤ C. If v = `, then, B(G, v, T − 1) ⊆ P ∪{`}

and P (G, v, T ) = {piT | 1 ≤ i ≤ r}. Therefore, cost(v,G) ≤
(rT + 1) L

n < C. This implies that at time t = 0, no vertex
gets vaccinated and therefore, there always exists a pure
NE for this game where the strategy of each vertex only
depends on the source. Hence, the cost of the NE is only
due to the second stage of vaccination.

Let s be the source. Now, we will compute a lower
bound for the expected cost. The sets of vertices which
are infected and vaccinated respectively are B(G, s, T − 1)
and P (G, s, T ). It is sufficient to consider the case s ∈ K.
Suppose s ∈ Ki for some i. Then, B(G, s, T − 1) = Ki ∪
Pi \ {piT } and P (G, s, T ) = {piT }. The cost of the NE is(

n−2r2T
r + T − 1

)
L+ 1 > n−2r2T

r L. Hence,

cost(Y ) > Pr(s ∈ K)n− 2r2T

r
L =

(n− 2r2T

n

)n− 2r2T

r
L,

which is bounded by
(

n−2r2T
)2

L

nr . Now, we bound the cost
of the social optimum from above. Suppose at time t = 0,
we vaccinate pi1 for all i = 1, . . . , r and `. Then, the residual
graph is disconnected, and comprises of the following
components: (1) cycles induced byKi and (2) paths induced
by Pi\{pi1}. It is easy to see that at time T−1, the number
of nodes infected is at most 2(T − 1) + 1, and the number
of nodes to be vaccinated at t = T to stop further spread
is at most two. Hence, the cost of the social optimum is at
most

(
2(T − 1) + 1

)
L+ 2C ≤ (2T + 1)L. Hence, proved.

C. Equilibria in complete graph
For the complete graph, we note that if T > 1, then

any node which did not vaccinate at time t = 0 will get
infected if the source is an infected node. The result below
gives a lower bound on the number of nodes that vaccinate
at t = 0 in any NE when G is a complete graph. Its proof
is omitted for brevity.

Lemma 3.5: For the instance (G, T ,C,L) where G =
(V,E) is a complete graph on n nodes and T > 1 where, T =
min{t ∈ T | t > 0}, the number of nodes that vaccinate
at t = 0, n0 is at least minv∈V

(
1− C0

v

Lv

)
n.

For the two-stage uniform cost game, we can show the
following stronger result.

Lemma 3.6: For the instance (G,T,C, L) where G =
(V,E) is a complete graph on n nodes, in every pure
NE strategy n0 =

⌈(
1− C

L

)
n
⌉
nodes vaccinate at t = 0.

Further, if T > 1, the PoA is ≈
(
1− C

4L

)−1 for C,L� n.
Proof: By Lemma 3.5, every pure NE strategy should

have at least
(
1− C

L

)
n nodes vaccinating at t = 0. If n0 =⌈(

1− C
L

)
n
⌉
, then, for every remaining node, the expected

cost is n−n0
n L ≤ 1

n

(
n −

(
1 − C

L

)
n
)
L ≤ C. Also, making

a secure node insecure will increase this cost for every

remaining insecure node. Hence, this is a pure NE and we
have proved the first part. Now we will consider the Price
of Anarchy. When T > 1, the expected cost of any strategy
is n0C + n−n0

n (n− n0)L = n0C + (n−n0)2

n L, with minima
at n0 =

(
1− C

2L

)
n. Therefore, the cost of social optimum

is
(
1− C

2L

)
nC +

(
C2

4L2

)
nL = nC

(
1− C

4L

)
. By substituting

n0 =
⌈(

1− C
L

)
n
⌉
above, the cost of any pure NE is ≈ nC.

Therefore, PoA is
(
1− C

4L

)−1

D. Equilibria in Erdős-Rényi graphs
Here, we study the structure of pure NE on instances

of the G(n, p) model. We consider two regimes: (R1) 1
n <

p < log n
n and T ≤ log( nC

4L log n )
1.5+log np , and (R2) p > c log n

n and

T ≤
log( nC

c′(L+npC) )
log np where c ≤ 2 is a constant and c′ is only

a function of c. We say that an event A(n) occurs almost
surely if Pr(A(n))→ 1 as n→∞.

Lemma 3.7: Consider the two-stage, uniform cost
game (G,T,C, L) where, G ∈ G(n, p). In both regimes (R1)
and (R2), almost surely, pure NE exist, and any such
strategy Y has Y (v, ·, 0) = 0 for all v ∈ V (G). Further,
the expected cost of a pure NE Y satisfies cost(Y ) ≤
2T 3 logn(np)T (L+C) for (R1) and cost(Y ) ≤ c′(np)T (L+
C) for (R2) almost surely.

Proof: Recall that the expected cost incurred by v
for not vaccinating at time 0 is 1

n

(
|B(G, v, T − 1)|L +

|P (G, v, T )|C
)
. First, we will prove the results concern-

ing (R1). We will use the following result from [5]: For
np > 1, any v ∈ V , |B(G, v, `)| ≤ 2`3(np)` logn and
|P (G, v, `) ≤ 2`2(np)` logn with probability at least
1 − o(n−1.5). Henceforth, we will assume that for all v,
this condition is satisfied. Note that, by union bound, this
happens with probability 1− o(n−0.5). Applying this, the
expected cost incurred by v for not vaccinating at time 0 is

≤ 1
n

(
2(T − 1)3(np)T−1(logn)L+ 2T 2(np)T (logn)C

)
≤2T 3(np)T logn(L+ C)

n
<

2(L+ C) logn
n

e3 log T +T log(np).

In the second inequality, we use the assumption np >

1. Since, in (R1) T ≤
log( nC

2(L+C) log n
)

1.5+log np , and 3 log T +
T (log(np)) ≤ T (1.5 + log(np)), the cost is at most C.
Therefore, from Lemma 3.1, it follows that Y (v, ·, 0) = 0
with probability 1− o(n−0.5) for all v ∈ V (G). Again, with
probability 1− o(n−0.5), the expected cost of any pure NE
strategy is,

cost(Y ) ≤ Es[|B(G, s, T − 1)|]L+ Es[|P (G, s, T )|]C (1)
≤ 2(T − 1)3(np)T−1(logn)L+ 2T 2(np)T (logn)C
≤ 2T 3(np)T (L+ C) logn .

We proceed similarly for (R2). Here, we use the following
result from [5]: For p > c log n

n , where c ≤ 2 is a constant,
for any v ∈ V (G), |B(G, v, `)| ≤ c′(np)` and |P (G, v, `) ≤
c′(np)` with probability at least 1−o(n−1.5), where c′ is only
a function of c. Again, this implies that (by union bound)
with probability at least 1 − o(n−0.5), these conditions
hold for every v ∈ V (G). The expected cost incurred by v



for not vaccinating at time 0 is at most 1
n

(
c′(np)T−1L +

c′(np)TC
)
≤ c′(np)T (L+C)

n . Since for (R2), T ≤
log( nC

c′(L+C) )
log np ,

it follows that the cost is at most C. Hence, Y (v, ·, 0) = 0
almost surely. As in the previous case, the cost of the pure
NE Y is cost(Y ) ≤ c′(np)T−1L+ c′(np)TC = c′(np)T (L+
C).
Social optimum: Let n0 denote the number of nodes
which are vaccinated at time 0. We show the following:

Lemma 3.8: In the two-stage, uniform cost
game (G,T,C, L) where, G ∈ G(n, p) and p > c log n

n , the
number of nodes vaccinated at time 0 in any optimal
strategy is n0 ≤ n− 1

p

(
nC

2c′L(T +1)
)1/T , almost surely, where

c′ is a function of c.
Proof: Let G′ denote the residual graph obtained

after removing the vaccinated nodes at time 0. The
cost of the optimum strategy Y OPT is cost(Y OPT) =
n0C + Es[|B(G′, s, T − 1)|]L + Es[|P (G′, s, T )|]C. Note
that G′ ∈ G(n− n0, p). Therefore, cost(Y OPT)

= n0C +
∑

s∈V (G′)

1
n

(
|B(G′, s, T − 1)|]L+ |P (G′, s, T )|C

)
≤ n0C + n− n0

n

(
c′((n− n0)p)T−1L+ c′((n− n0)p)TC

)
< n0C + c′(n− n0)T +1pT (L+ C)

n
.

Note that the last expression is a convex function in n0
with minima at n− 1

p

(
nC

c′(L+C)(T +1)
)1/T .

IV. Social optimum
We first show that computing the social optimum of the

TemporalVaccination game is NP-complete, and then
we develop an approximation algorithm using the approach
of two-stage stochastic optimization.

Lemma 4.1: Computing the social optimum of a Tem-
poralVaccination instance (G, T ,C,L) is NP-complete.

Proof: For a given strategy Y (·), we can estimate the
expected cost in polynomial time, since there are only
n random choices, corresponding to the random source.
Therefore the decision version of this problem, i.e., deciding
if the social optimum has cost at most B for a parameter
B is in NP. When Ct

j = 0 for all t ∈ T and j ∈ V , this
problem is equivalent to the GNS(d) game on the graph
G, which is NP-hard [13].
Approximating the social optimum. We now discuss
an approximation algorithm for computing the social opti-
mum. Our algorithm is based on the two-stage stochastic
optimization approach. We first define some quantities
which are needed for our algorithm. Let PT

ij denote the set
of all simple paths between nodes i and j having length
at most T in G. We start with an integer programming
formulation for the social optimum. We have the following
variables

1) y0j for each j ∈ V , which is an indicator for node j being
vaccinated at time 0.

2) ysj for each j, s ∈ V , which is an indicator for node j
being vaccinated at time T , when the random source
is s.

3) zij for each i, j ∈ V , which is an indicator for the event
that there is no path P ∈ PT

ij consisting entirely of
unvaccinated nodes.

Our integer programming P has the following structure:

minf(y, z) =
∑

v

C0
vy0v + 1

n

∑
k,v

CT
v ykv + 1

n

∑
k,j

Lj(1− zkj)

s.t.
∑
v∈p

y0v ≥ zsj ,∀p ∈ PT
sj , with length < T (2)∑

v∈p

y0v + ysj ≥ zsj ,∀p ∈ PT
sj , with length T (3)

y0v, ysv, zij ∈ {0, 1}, ∀s, v, i, j ∈ V .

Lemma 4.2: Let (y, z) be the solution to the above
integer program P. Then, the strategy Y (v, 0) = y0v and
Y (v, s, T ) = ysv is an optimal solution to (G, T ,C,L).

Proof: Let Y opt(·) be the socially optimal strategy to
the given instance of the TemporalVaccination instance.
If Y opt(j, ·, 0) = 0, node j incurs a cost of Lj if the source
is s and dG[V−V0(Y opt)](s, j) < T , and it incurs a cost of CT

j

if dG[V−V0(Y opt)](s, j) = T , since we assume that Ct
j < Lj

for all t, j. If Y opt(j, 0) = 1, node j incurs cost C0
j .

Let Y (·) be the strategy constructed from (y, z) in the
lemma. We observe that f(y, z) equals cost(Y ), and Y (·)
satisfies the same property as Y opt above. For the nodes
j ∈ V0(Y ), we have y0j = 1, which accounts for the cost∑

j∈V0(Y ) C
0
j of vaccination at time 0. Next, assume node

j was not vaccinated at time t, i.e., Y (j, ·, 0) = 0. In the
second stage, if j has distance less than T from the random
source s in the residual graph, then there exists a path
p ∈ PT

sj such that y0v = 0 for all v ∈ p, including s and j.
Then, constraint (2) in P causes zsj = 0, so that node j
incurs an infection cost of Lj(1−zsj) = Lj in this case. On
the other hand, if dG[V−V0(Y )](s, j) = T , by constraint (3),
we have zsj = 1 if and only if ysj = 1. This leads to a cost
of CT

j ysj = CT
j for node j. Note that ysj = 0 would have

caused zsj = 0, leading to an infection cost of Lj(1− zsj),
which would be higher than CT

j . Since s is the source with
probability 1

n , this cost component is scaled in f(y, z) by
1
n . This implies f(y, z) = cost(Y ), and Y (·) satisfies the
same property as Y opt.

Lemma 4.3: For any T , the linear relaxation PL can be
solved in polynomial time.

Proof: When T is a constant, the linear program PL

is of polynomial size, since |PT
sj | = O(nT ). Therefore,

in this case, we can directly solve the LP and find the
fractional solution (y1, z1). When T is not a constant, PL

has super-polynomially many constraints, and cannot be
solved explicitly. We use the Ellipsoid method [21], which
gives a polynomial time algorithm for finding a feasible
solution x from a convex polytopeK ⊆ RN . We refer to [21]
for complete details, but note here that the key component
needed for this method to work is to design a polynomial
time “separation oracle”, which, given a candidate solution



Algorithm 1: ApproxSocOpt
input :G, T , C, L
output : Strategy Y (·)

1 Solve a linear relaxation PL of the program P, in
which the constraints y0v, ysv ∈ {0, 1} and
zij ∈ {0, 1} are replaced by

y0v, ysv ∈ [0, 1], ∀s, v ∈ V
zij ∈ [0, 1], ∀i, j ∈ V

2 If T is not a constant, PL has exponentially many
constraints, and we use the ellipsoid method to solve
it, as discussed in Lemma 4.3.

3 Let (y1, z1) denote the optimum fractional solution
to PL.

4 We construct a new fractional solution (y2, z2) in the
following manner:

5 for each i, j do
6 set z2

ij = 0 if z1
ij ≤ 1/2, and z2

ij = 1 otherwise
7 for j ∈ V do
8 Set y2

0j = min{2y1
0j , 1} and

y2
sj = min{2y1

sj , 1}, for all s ∈ V .

9 for j ∈ V do
10 if y2

0j > 1/T , we set Y (·, j, 0) = 1, else we set
Y (·, j, 0) = 0.

11 if y2
sj > 1/T , we set Y (s, j, T ) = 1, else we set

Y (s, j, T ) = 0.

(y, z), can decide if it is feasible, or finds a constraint that
is infeasible.

We convert the PL into a feasibility problem by “guess-
ing” the cost of the objective, and adding a constraint that
f(y, z) ≤ B, where B is the estimate of the objective value.
Such a separation oracle can be designed for the program
PL as follows:

1) For each pair s, j:
a) Define weight wv = y0v in the graph G
b) Compute the shortest path distance dist(s, j, T − 1)

from s to j restricted to paths with length at most
T − 1, based on the weights w. If dist(s, j, T − 1) < zsj ,
we return

∑
v∈p y0v ≥ zsj as the violated constraint.

c) Compute the shortest path distance dist(s, j, T ) from
s to j restricted to paths with length at most T , based
on the weights w. If dist(s, j, T ) < zsj − ysj , we return∑

v∈p y0v + ysj ≥ zsj as the violated constraint.
2) Finally, if f(y, z) > B, it is returned as a violated

constraint.

These steps can be implemented in polynomial time.
Therefore the separation oracle runs in polynomial time,
so that the above algorithm returns a solution to program
PL in polynomial time, with cost at most the objective
value, if it exists. We refer to [21] for complete details of
the Ellipsoid method and its proof.

Lemma 4.4: Algorithm ApproxSocOpt gives a 2T -
approximation to the social optimum.

Proof: Let Y opt(·) be the optimum solution. From
Lemma 4.2, it follows that f(y1, z1) ≤ cost(Y opt).

We first argue that (y2, z2) is feasible and f(y2, z2) ≤
2f(y1, z1). By the construction, we have 1−z2

ij ≤ 2(1−z1
ij),

whether z1
ij ≤ 1/2 or z1

ij > 1/2. Constraints (2) and (3)
corresponding to a pair s, j, continue to hold if z2

sj = 0. The
constraints corresponding to pairs s, j, for which z2

sj = 1
also continue to hold, since z2

sj ≤ 2z1
sj in this case, and

we have y2
0j = min{2y1

0j , 1} and y2
sj = min{2y1

sj , 1}, for all
j, s ∈ V .

For each pair s, j, if z2
sj = 1, it follows that for every

path p ∈ PT
sj : (1) if len(p) < T , there must be some node

v ∈ p such that y2
0v ≥ 1/T , which implies Y (·, v, 0) = 1;

and (2) if len(p) = T , either there exists some node v ∈ p
such that y2

0v ≥ 1/T , or y2
sj ≥ 1/T . In the former case,

we have Y (·, v, 0) = 1, whereas in the latter case, we have
Y (s, j, T ) = 1.

Finally, by construction, we have Y (·, j, 0) ≤ Ty2
0j and

Y (s, j, T ) ≤ Ty2
sj . This implies that cost(Y (·)) ≤ 2T ·

cost(Y opt).

V. Experiments

We now study characteristics of Nash equilibria
of the TemporalVaccination game in several so-
cial/communication networks and two random graph mod-
els, as summarized in Table II. In light of Lemma 3.2, we
use a best response strategy to search for NE. We study the
number and characteristics of nodes that get vaccinated
at times 0 or T , and how this is affected by the relative
vaccination costs at these times. Our main observations are
summarized below.

TABLE II: Networks used in our experiments and their relevant
properties: two real [15] and two synthetic graphs. We study
the synthetic graphs with varying edge densities.

Network Nodes (n) Edges (|E|)
Ca-GRQC (co-authorship net-
work)

4158 13422

AS20000102 (autonomous sys-
tem network)

6474 12572

Barabasi-Albert 1000 varying
Erdős-Rényi 1000 varying

1. Number of vaccinated nodes at t = 0 and t = T
The number of nodes getting vaccinated initially, i.e.,
|V0(Y )|, is very sensitive to C

L , and drops rapidly, as shown
in Figure 2(c) and (d). Surprisingly, the number of nodes
vaccinating at time T , i.e., |VT (Y )|, however, is fairly stable
across C

L in both the networks. Further, there seems to be
a cut-off point for C/L, where |V0(Y )| falls below |VT (Y )|,
which might be useful in policy design.

2. Performance of best response strategies
We find that the best response strategy generally converges
to NE in linear number of rounds, as illustrated in Figure
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Fig. 2: Convergence time to NE using best response for
(a) Autonomous System and (b) Co-authorship network.
Variation of |V0(Y )| and |VT (Y )| with C/L, for different
values of T in (c) Autonomous System and (d) Co-
authorship network.

2. Moreover, the convergence time decreases rapidly with
the C/L ratio, and increases with T . This suggests a high
correlation between nodes the number of nodes vaccinating
at time 0 and convergence time, which is an interesting
topic for further investigation. The two real networks in
Figure 2(a) and (b) exhibit very different behaviors, which
might be the result of their structural differences. We also
find that performance of best response is sensitive to the
initial condition.

3. Effect of network density
Figure 3 (a) and (c) show the effect of network density, by
varying the edge probability, p, for the Erdős-Rényi graph
G(n, p) and the number of edges per new node, m for
the BA(n,m) graph. We see that as the network becomes
denser, more nodes vaccinate at time 0. Further, dense
networks exhibit low diameter, and thus the game quickly
approaches GNS(∞) of [13] for small increments in T .

4. Effect of heterogeneous costs
Figure 3 (b) considers the scenario when CT 6= C0. Note
that for fixed C0, as CT increases, more nodes vaccinate
at time 0.

5. Effect of T
From Figure 3 (d), as T , the minimum waiting time to
next vaccination, increases, more nodes vaccinate at time 0.
Further, this effect is more pronounced for denser networks.
Qualitatively, this behavior is expected; as T increases,
its T -ball becomes larger and the likelihood of a node
getting infected before time T increases.

6. Correlation between degree and likelihood of
vaccination at time 0
Figure 3 (e) shows the degree of nodes vaccinating at
time 0 in NE plotted along with the degree of all nodes,
for a Barabasi-Albert network with N = 1000, m = 3,
C/L = 0.1, T = 3. We notice that almost all the nodes
that get vaccinated at time 0 are among the top degree
nodes. We observe a similar behavior in other networks,
and these results are omitted because of space constraints.

VI. Related Work

There is a large literature on the use of non-cooperative
game models for controlling the spread of epidemics and
malware. We briefly summarize some of the main areas
that are directly relevant to our paper.

A common approach in the mathematical epidemiology
literature is based on differential equation models, e.g., [4],
[10], [9], [6], [18], [19], [22]. These models are based on
simplified assumptions about uniform mixing among the
players, which allows for rigorous analysis. For instance,
Bauch et al. [4] show that the NE can be completely
characterized in terms of the reproductive number, which
is the expected number of secondary infections caused by
an infected individual. These models are deterministic and
usually only consider vaccination strategies before the start
of the epidemic. Reluga et al. [19] develop an approach that
combines population games with Markov decision process,
and consider decisions at different times.

Such differential equation models do not capture the
complexity of interactions in real social contact networks.
The work of Aspnes et al. [3] was among the first to
study a network based formulation for vaccination games.
They characterize NE in terms of the network structure
and develop approximation algorithms for computing the
social optimum. The utility function in their formulation
requires the estimation of the probability that a node gets
infected, which requires a lot of information. Kumar et al.
[13] extend this formulation by restricting the amount of
information needed by an individual. Our work builds on
this formulation. Mean-field approximations have been used
for detailed analysis in the SIS model, in which nodes switch
from Susceptible to Infectious state, thereby capturing a
more realistic epidemic model, e.g., [17], [22]. Saha et al. [20]
consider a different formulation based on the spectral radius
(the first eigenvalue of the network), in which the utility
is based on whether or not the spectral radius is above
a threshold or not— this is based on a characterization
of the time to die out in the SIS model in terms of the
spectral properties. However, all these approaches only
consider vaccination decisions at the start of the epidemic,
in a one-shot simultaneous game formulation. We also note
that game-theoretical methods have been also used in other
network security applications, e.g., [7], [8].

VII. Discussion and Conclusions

The TemporalVaccination game shows that vacci-
nation decisions over time exhibit a very rich behavior.
In both synthetic and real networks, and across a broad
class of parameter regimes, we find that a significant
fraction of nodes choose to get vaccinated later. The
initially vaccinated fraction drops significantly as the ratio
of vaccination and infection costs increases. Further, the
timing of vaccination depends crucially on the network
structure and information about the source and disease
incidence. Therefore, the effect of delays in vaccination
decisions has important implications for public health policy
planning, and needs to be taken into careful consideration.
In particular, vaccine availability needs to reflect the
structure of equilibria. As a result, computing properties
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Fig. 3: The first four plots correspond to nodes vaccinating at t = 0 as a function of system parameters for the synthetic
networks in Table II. The fifth plot shows the correlation between node degree and the chances of the node vaccinating at
time 0.

of such games, including NE and social optimum, is an
important issue. Admittedly, we have made a number
of simplifying assumptions in our formulations. We only
focus on a simple version of the SI model with infection
probability 1, with perfect information about the source and
other infections. Further, we assume vaccines have 100%
efficacy and no delay. Relaxing all these assumptions are
important directions for future work. We note that for many
of our results, a vaccine delay of τ can be taken into account
by considering an effective decision time of T + τ , instead
of T . Finally, we do not assume any resource constraints
(e.g., a bound on the number of vaccines available at any
time). In [1], we show that resource constraints change the
structure of the game significantly.
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